UCLA-led team develops new method to study mitochondrial DNA diseases

Alexander Patananan The process of transferring mitochondria between cells using the nanoblade technology.   A UCLA-led team of researchers has demonstrated a new method to conduct research on mitochondrial DNA diseases — a broad group of debilitating genetic disorders that can affect the brain, heart and muscles. The new method, which utilizes a technology developed by UCLA researchers that opens holes in the cell membrane, is described in a study published today in Cell Metabolism. The researchers say that it could pave the way for specific research on how and why these diseases occur, and point to pathways to develop treatments. Mitochondria, often referred to as the cell’s “energy powerhouse,” are small organelles that reside inside a cell’s cytoplasm but outside the nucleus. They convert food into energy and building blocks for cells in a process known as metabolism. Mutations in mitochondrial DNA, or mtDNA, can cause devastating diseases that mainly affect tissues and cells with high-energy demands. One of the best known mtDNA diseases is Leber’s hereditary optic neuropathy, which can cause sudden and profound loss of central vision. Because mitochondria in humans are maternally inherited, mtDNA diseases can be passed from an unaffected mother to her children. “Although specific mtDNA diseases are rare, the collective prevalence of mtDNA diseases from all types of mtDNA mutations is estimated to be 1 in 5,000 individuals,” said Dr. Michael Teitell, dir...
Source: UCLA Newsroom: Health Sciences - Category: Universities & Medical Training Source Type: news