Chrysin reduces hypercholesterolemia-mediated atherosclerosis through modulating oxidative stress, microflora, and apoptosis in experimental rats

In this study, we focused on the hypolipidemic proprieties of Chy in hypercholesterolemia-induced atherosclerosis. Male Wistar rats (150-220 g) were divided into four groups as follows: Group I control was fed with standard laboratory chow. Rats in Group II were fed a high-fat diet (HFD) for 60 days. After 60 days of HFD, Group III rats received Chy (100 mg/kg body weight); Group IV rats received Atorvastatin (Atv; 10 mg/kg body weight) for 30 days. Biochemical studies showed Chy, Atv treatment decreased the activities of liver marker enzymes and the levels of Reactive Oxygen Species (ROS) and lipid profile. Gene expression analysis on nuclear factor erythroid 2-related factor 2 (Nrf2) and its regulated genes were significantly reduced in the intestine and increased in the aorta by Chy and Atv. Gut microbial species such as Bacteroidetes, Lactobacillus, Enterococcus, and Clostridium leptum copy numbers were significantly increased by Chy and Atv treatment. In addition, Chy and Atv modulated the expression of inflammatory genes including TLR4, TNFα, NLRP3, and IL-17 in the aorta and intestine compared with hypercholesterolemic control rats. Chy and Atv effectively increased the caspase-3 mRNA expression in the intestine, but these decreased in the aorta. The present study concludes that by reducing oxidative stress and increasing gut microbial colonization, Chy may provide an effective therapeutic approach for the prevention of hypercholesterolemia-mediated atherosclerosis. P...
Source: Atherosclerosis - Category: Cardiology Authors: Source Type: research