Development of a realtime RT-PCR assay for the rapid detection of influenza A(H2) viruses

Publication date: Available online 23 June 2017 Source:Molecular and Cellular Probes Author(s): Komissarov Andrey, Fadeev Artem, Kosheleva Anna, Grudinin Mikhail Influenza and other acute respiratory infections are of great concern for public health, causing excessive morbidity and mortality throughout the world. Influenza virus A(H2N2), which caused a pandemic of so called "Asian flu" in 1957 was expelled from the human population by the new pandemic virus subtype H3N2 in 1968, however, influenza A(H2) viruses continue to circulate in wild birds and poultry. The lack of immunity in human population and the continued circulation of influenza A(H2) among animals makes emergence of a new pandemic virus possible. One of the basic techniques of molecular diagnostics of infectious diseases is the realtime polymerase chain reaction (PCR). The aim of this work was to design oligonucleotide primers and probes for the rapid detection of influenza A virus subtype H2 by realtime reverse transcription - polymerase chain reaction (rRT-PCR). Analysis of 539 sequences of influenza A(H2N2) virus hemagglutinin gene from GISAID EpiFlu database revealed conservative regions suitable for use as binding sites for primers and probes. 191 probes were designed and 2 sets of primers and probes (H2-1 and H2-2) were selected for further experimental evaluation. Detection limit of RT-PCR system was 50 copies of DNA per 25 μl reaction when 10-fold dilutions of pCI-neo-H2 plasmid used as template....
Source: Molecular and Cellular Probes - Category: Molecular Biology Source Type: research