Engineering Therapeutic Mesenchymal Stem Cells to Overexpress HIF1 α

Reseachers here demonstrate that engineering the mesenchymal stem cells provided in a cell therapy to overexpress HIF1α produces regeneration in a pig model of heart failure. The mechanisms involved are up for debate, as they may or may not involve an extension of survival of the stem cells following transplant, versus a shift in cell signaling. Mesenchymal stem cells do not survive long in most such treatments, and their beneficial effects are the result of signals secreted in the short time they are present in tissues. Given the feasibility of engineering cells in vitro in any number of ways, this is a logical next step for the industry, now that first generation cell therapies are so well established. Recent preclinical investigations and clinical trials with stem cells mostly studied bone-marrow-derived mononuclear cells (BM-MNCs), which so far failed to meet clinically significant functional study endpoints. BM-MNCs containing small proportions of stem cells provide little regenerative potential, while mesenchymal stem cells (MSCs) promise effective therapy via paracrine impact. Genetic engineering for rationally enhancing paracrine effects of implanted stem cells is an attractive option for further development of therapeutic cardiac repair strategies. Non-viral, efficient transfection methods promise improved clinical translation, longevity and a high level of gene delivery. Hypoxia-induced factor 1α (HIF1α) is responsible for pro-angiogenic, anti-apo...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs