Visceral Fat Behaves Differently in Long-Lived Dwarf Mice

A few varieties of dwarf mice exhibit considerable longevity. They are produced via forms of mutation that disable portions of growth hormone metabolism, such as via growth hormone receptor knockout. Most research has thus focused on insulin signaling, IGF-1, and other pathways closely tied to growth hormone. Here, scientists instead focus on the behavior of fat tissue in these long-lived mouse lineages, suggesting that the significant differences they observe in the metabolism of visceral fat may contribute to the impact on aging. It is well known that visceral fat is metabolically active, and excess amounts create chronic inflammation through a number of mechanisms, including accelerated generation of senescent cells. That doesn't appear to happen to anywhere near the same degree in dwarf mice, and the researchers offer their thoughts as to why this might be the case. In this context, it would be interesting to compare the biochemistry of the small human population exhibiting Laron syndrome, which similarly results from a loss of function mutation affecting growth hormone metabolism. They do not appear to live any longer than the rest of us, but there are suggestions in the data that they may be modestly more resistant to some age-related conditions. Dwarf mice were found to have functionally altered adipose tissues. Generally, three types of adipose tissue are found in mammals: white, brown, and beige. White adipose tissue (WAT) is considered the body's ene...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs