Turning weeds into feed: Ensiling Calotropis gigantea (Giant milkweed) reduces its toxicity and enhances its palatability for dairy cows

This study aimed to valorize GM as a potential new feed resource through the chemical and microbial biotransformation of toxic compounds that will henceforth, make the plant palatable for cows. After GM's ensiling using fermentative bacteria, the plant was sampled for UHPLC-MS/MS to analyse the metabolomic changes. Illumina Miseq of the 16 S rRNA fragment genes and ITS1 were used to describe the microbial composition and structure colonizing GM silage and contributing to the biodegradation of toxic compounds. Microbial functions were predicted from metataxonomic data and KEGG pathways analysis. Eight Holstein dairy cows assigned in a cross-over design were supplemented with GM and GM silage to evaluate palatability and effects on milk yield and milk protein. Cows were fed their typical diet prior to the experiment (positive control). After ensiling, 23 flavonoids, 47 amino acids and derivatives increased, while the other 14 flavonoids, 9 amino acids and derivatives decreased, indicating active metabolism during the GM ensiling process. Lactobacillus buchneri, Bacteroides ovatus, and Megasphaera elsdenii were specific to ensiled GM and correlated to functional plant metabolites, while Sphingomonas paucimobilis and Staphylococcus saprophyticus were specific to non-ensiled GM and correlated to the toxic metabolite 5-hydroxymethylfurfural."Xenobiotics biodegradation and metabolism", "cancer overview" and "neurodegenerative disease" were the highly expressed microbial KEGG pathway...
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Source Type: research