Filtered By:
Condition: Alcoholism
Cancer: Liver Cancer

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 30 results found since Jan 2013.

Title: Genistein Disrupts Glucocorticoid Receptor Signaling in Human Uterine Endometrial Ishikawa Cells
Conclusions: Using Ishikawa cells, we observed that exposure to genistein resulted in distinct changes in gene expression and unique differences in the GR transcriptome. Citation: Whirledge S, Senbanjo LT, Cidlowski JA. 2015. Genistein disrupts glucocorticoid receptor signaling in human uterine endometrial Ishikawa cells. Environ Health Perspect 123:80–87; http://dx.doi.org/10.1289/ehp.1408437 Address correspondence to J.A. Cidlowski, NIH/NIEHS, MD F3-07, P.O. Box 12233, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-1564. E-mail: cidlows1@niehs.nih.gov We thank X. Xu (Integrative Bioinformatic...
Source: EHP Research - December 31, 2014 Category: Environmental Health Authors: Web Admin Tags: Research Article January 2015 Source Type: research

Endothelial Cell-Derived TGF- β Promotes Epithelial-Mesenchymal Transition via CD133 in HBx-Infected Hepatoma Cells
Conclusion: The study indicates that secretory factors like TGF-β from neighboring endothelial cells may enhance expression of CD133 and impart an aggressive EMT phenotype to HBx-infected hepatoma cells in HBV induced HCC. Introduction Hepatocellular Carcinoma (HCC) is one of the most common cancer worldwide, representing approximately 4% of all malignancies (1). It has been estimated that more than 50% of HCC cases in the world are associated with hepatitis B virus (HBV) (2). HBV is a partially double stranded DNA virus belonging to the Hepadnavirus family. The HBV genome is 3.2 kb in size and contains fou...
Source: Frontiers in Oncology - April 23, 2019 Category: Cancer & Oncology Source Type: research

Genetic Regulation of Liver Metabolites and Transcripts Linking to Biochemical-Clinical Parameters
Conclusion In summary, this study is the first to combine metabolomics, transcriptomics, and genome-wide association studies in a porcine model. Our results improve understanding of the genetic regulation of metabolites which link to transcripts and finally biochemical-clinical parameters. Further, high-performance profiling of metabolites as intermediate phenotypes is a potentially powerful approach to uncover how genetic variation affects metabolic and health status. Our results advance knowledge in areas of biomedical and agricultural interest and identify potential correlates of biomarkers, SNPs-metabolites, SNPs-tran...
Source: Frontiers in Genetics - April 16, 2019 Category: Genetics & Stem Cells Source Type: research

Tangshen Formula Alleviates Hepatic Steatosis by Inducing Autophagy Through the AMPK/SIRT1 Pathway
Conclusion In conclusion, the present study demonstrated that autophagy was involved in relieving the effects of TSF against NAFLD, which were mediated by the AMPK/SIRT1 pathway (Figure 7D). These findings may improve our current understanding of the role of TSF in treating hepatic steatosis and provide an experimental basis for the clinical application of TSF in NAFLD and its related metabolic syndrome. Ethics Statement This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Ethics Co...
Source: Frontiers in Physiology - April 25, 2019 Category: Physiology Source Type: research

Overexpressed GNAZ predicts poor outcome and promotes G0/G1 cell cycle progression in hepatocellular carcinoma
CONCLUSION: Our study demonstrated that GNAZ plays a pivotal role as a potential oncogene and predicts poor prognosis in patients with HCC. It promotes tumor proliferation via cell cycle arrest, apoptosis, migration, and invasion. Thus, GNAZ may be a potential candidate biomarker providing useful insight into hepatocarcinogenesis and aggressiveness.PMID:34530087 | DOI:10.1016/j.gene.2021.145964
Source: Gene - September 16, 2021 Category: Genetics & Stem Cells Authors: Feng Tian Daxia Cai Source Type: research

RNA Interference as a Therapeutic Strategy for the Treatment of Liver Diseases.
Abstract RNA interference has emerged as an innovative technology for gene silencing that degrades mRNAs complementary to the antisense strands of double-stranded, short interfering RNAs (siRNAs). Its therapeutic application has important advantages over small-molecule drugs since offers the possibility of targeting virtually all genes and allows selective silencing of one or several genes. So far, a relative small proportion of cellular proteins can bind and respond to chemical drugs. Based on that, RNA interference-mediated gene silencing is widely considered as a crucial breakthrough in molecular biology with a...
Source: Current Pharmaceutical Design - October 23, 2015 Category: Drugs & Pharmacology Authors: Gonzalez-Rodriguez A, Valverde AM Tags: Curr Pharm Des Source Type: research

Acetaldehyde Disrupts Interferon Alpha Signaling in Hepatitis C Virus ‐Infected Liver Cells by Up‐Regulating USP18
ConclusionsWe conclude that Ach disrupts IFNα‐induced STAT1 phosphorylation by the up‐regulation of USP18 to block the innate immunity protection in HCV‐infected liver cells, thereby contributing to HCV‐alcohol pathogenesis. This, in part, may explain the mechanism of HCV‐infection exacerbation/progression in alcohol‐abusing patients. IFNα is an important innate immunity factor, which controls HCV replication and spread via the JAK‐STAT1 pathway activation. Here, we investigated the mechanisms which major ethanol metabolite, acetaldehyde, uses to enhance HCV RNA by decreasing IFNα‐induced STAT1 phosphor...
Source: Alcoholism: Clinical and Experimental Research - September 25, 2016 Category: Addiction Authors: Murali Ganesan, Larisa Y. Poluektova, Dean J. Tuma, Kusum K. Kharbanda, Natalia A. Osna Tags: Original Article Source Type: research

Exploring a common mechanism of alcohol-induced deregulation of RNA Pol III genes in liver and breast cells.
Abstract Alcohol intake is associated with numbers of different human cancers, such as hepatocellular carcinoma (HCC) and breast cancer. However, the molecular mechanism remains to be elucidated. RNA polymerase III-dependent genes (Pol III genes) deregulation elevates cellular production of tRNAs and 5S rRNA, resulting in an increase in translational capacity, which promote cell transformation and tumor formation. To explore a common mechanism of alcohol-associated human cancers, we have comparably analyzed that alcohol causes deregulation of Pol III genes in liver and breast cells. Our results reveal that alcohol...
Source: Gene - May 25, 2017 Category: Genetics & Stem Cells Authors: Yi Y, Huang C, Zhang Y, Tian S, Lei J, Chen S, Shi G, Wu Z, Xia N, Zhong S Tags: Gene Source Type: research

Apelin protects against liver X receptor-mediated steatosis through AMPK and PPAR α in human and mouse hepatocytes.
Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes. Cell Signal. 2017 Aug 15;39:84-94 Authors: Huang J, Kang S, Park SJ, Im DS Abstract Non-alcoholic fatty liver disease is the most commonly occurring chronic liver disease, and hepatic steatosis, a condition defined as extensive lipid accumulation in hepatocytes, is associated with liver dysfunction and metabolic diseases, such as, obesity and type II diabetes. Apelin is an adipokine that acts on a G protein-coupled receptor named APJ, and has been established to play pivotal roles in var...
Source: Cellular Signalling - August 15, 2017 Category: Cytology Authors: Huang J, Kang S, Park SJ, Im DS Tags: Cell Signal Source Type: research

Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120)
Publication date: Available online 7 November 2017 Source:Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids Author(s): Saeromi Kang, Jin Huang, Bo-Kyung Lee, Young-Suk Jung, Eunok Im, Jung-Min Koh, Dong-Soon Im Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepat...
Source: Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids - November 8, 2017 Category: Lipidology Source Type: research

Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120).
Abstract Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepatic steatosis, we used an in vitro model of liver X receptor (LXR)-mediated hepatocellular steatosis. FFA4 expression was confirmed in Hep3B and HepG2 human hepatoma cells. T0901317 (a specific LXR activator) induced lip...
Source: Biochimica et Biophysica Acta - November 7, 2017 Category: Biochemistry Authors: Kang S, Huang J, Lee BK, Jung YS, Im E, Koh JM, Im DS Tags: Biochim Biophys Acta Source Type: research

Repin1 deficiency in liver tissue alleviates NAFLD progression in mice
This study provides evidence that loss of Repin1 in the liver attenuates NAFLD progression, most likely by reducing fat accumulation and alleviating chronic tissue inflammation. Thus, modulating Repin1 expression may become a novel strategy and potential tool to inhibit NAFLD progression.Graphical abstract
Source: Journal of Advanced Research - November 23, 2018 Category: Research Source Type: research

Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTP β/ζ Axis: Relevance in Therapeutic Development
Conclusion The expression of the components of the PTN-MK-RPTPβ/ζ axis in immune cells and in inflammatory diseases suggests important roles for this axis in inflammation. Pleiotrophin has been recently identified as a limiting factor of metainflammation, a chronic pathological state that contributes to neuroinflammation and neurodegeneration. Pleiotrophin also seems to potentiate acute neuroinflammation independently of the inflammatory stimulus while MK seems to play different -even opposite- roles in acute neuroinflammation depending on the stimulus. Which are the functions of MK and PTN in chronic neuroi...
Source: Frontiers in Pharmacology - April 11, 2019 Category: Drugs & Pharmacology Source Type: research

Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective
Conclusion Most head and neck pathologies show a broad cellular heterogeneity making it difficult to achieve an accurate diagnosis and efficient treatment (Graf and Zavodszky, 2017; Lo Nigro et al., 2017). Single cell analysis of circadian omics (Lande-Diner et al., 2015; Abraham et al., 2018), may be a crucial tool needed in the future to fully understand the circadian control of head and neck diseases. It becomes more obvious that there is only a small genetic component but a largely unknown epigenetics and/or environmental component for most of the head and neck pathologies (Moosavi and Motevalizadeh Ardekani, 2016; He...
Source: Frontiers in Physiology - April 15, 2019 Category: Physiology Source Type: research