Age-Related Dysfunction in Cellular Metabolism Substantially Impacts the Immune System

Most of what to my eyes are less promising lines of research into the treatment of aging are focused on manipulation of cellular metabolism. These approaches, such as targeting the mTOR pathway, largely derive from the study of calorie restriction and the cellular response to stress that is brought on by lack of nutrients. Calorie restriction extends average and maximum life span considerably in short-lived species, up to 40% in mice, for example. It increases the efficiency of cellular maintenance processes and makes cells more frugal in other ways. The impact of aging is slowed, as molecular damage accumulates less rapidly. Yet in long-lived species such as our own, short-term benefits are evident, but the practice of calorie restriction doesn't change human life span by a large amount. It is thought by some in the research community that many of the changes that take place in short-lived mammals in response to nutrient stress have already evolved to operate consistently in long-lived mammals such as ourselves, precisely in order to make us long-lived. Calorie restriction produces such sweeping changes in the operation of cellular metabolism that researchers make only slow progress towards picking out the areas of importance, or towards expanding the catalog of interactions between pathways and mechanisms and aging. Cellular metabolism becomes more dysfunctional with age in ways that can be assessed. As today's open access paper notes, some of these changes ap...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs