Filtered By:
Condition: Brain Tumor
Therapy: Gene Therapy

This page shows you your search results in order of date.

Order by Relevance | Date

Total 22 results found since Jan 2013.

Combination of B7H6-siRNA and temozolomide synergistically reduces stemness and migration properties of glioblastoma cancer cells
This study aimed to understand the potential role and molecular mechanism of the combination therapy of B7H6-siRNA and temozolomide in glioblastoma cancer. U87 cells were treated with B7H6-siRNA and temozolomide, separately and in combination. Cell viability, stemness, cell migration, and apoptosis were measured. The results of this work presented the synergistic effect of B7H6-siRNA and temozolomide in inhibiting the cancerous features of the U87 cell line. Down-regulating B7H6-siRNA expression inhibited the cell viability of U87 glioblastoma cancer cells and increased their sensitivity to temozolomide. In addition, a not...
Source: Experimental Cell Research - May 29, 2023 Category: Cytology Authors: Nadia Allahyarzadeh Khiabani Mohammad Amin Doustvandi Fateme Mohammadnejad Elnaz Salmani Hassan Kohal Neda Boushehri Mahdi Jafarlou Behzad Baradaran Source Type: research

Long non-coding RNA LUCAT1 regulates the RAS pathway to promote the proliferation and invasion of malignant glioma cells through ABCB1
In this study, the role of lung cancer associated transcript 1 (lncRNA LUCAT 1) in glioma occurrence and development, as well as its possible regulatory mechanism, was explored. We utilized the gene chip technology in the preliminary experiment, and based on the experiment results, selected LUCAT1(NONHSAT102745), which was significantly upregulated in glioma, and ATP-binding cassette Subfamily B member l (ABCB1), which was significantly down-regulated in co-expression analysis, for study. Next, the expression of LUCAT1 and ABCB1 in cells and tissues was immediately evaluated. Subsequently, the cells were transfected wi...
Source: Cell Research - October 21, 2022 Category: Cytology Authors: Xia Wu Lvmeng Song Xiangrong Chen Yalan Zhang Shun Li Xiaoping Tang Source Type: research

A Nanoparticle-Conjugated Anti-TBK1 siRNA Induces Autophagy-Related Apoptosis and Enhances cGAS-STING Pathway in GBM Cells
CONCLUSION: The rGO-PEG could be an efficient system facilitating the delivery of specific siRNA. TBK1si/rGO-PEG could be a novel strategy for the treatment of GBM.PMID:34931127 | PMC:PMC8684524 | DOI:10.1155/2021/6521953
Source: Evidence-based Complementary and Alternative Medicine - December 21, 2021 Category: Complementary Medicine Authors: Shengchao Xu Xi Yan Lu Tang Gan Dai Chengke Luo Source Type: research

EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects
Biomed Pharmacother. 2021 Dec 11;146:112532. doi: 10.1016/j.biopha.2021.112532. Online ahead of print.ABSTRACTBrain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, gliobla...
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - December 15, 2021 Category: Drugs & Pharmacology Authors: Mahshid Deldar Abad Paskeh Atefeh Mehrabi Mohammad Hossein Gholami Amirhossein Zabolian Ehsan Ranjbar Hossein Saleki Adnan Ranjbar Mehrdad Hashemi Yavuz Nuri Ertas Kiavash Hushmandi Sepideh Mirzaei Milad Ashrafizadeh Ali Zarrabi Saeed Samarghandian Source Type: research

Targeting CD146 using folic acid-conjugated nanoparticles and suppression of tumor growth in a mouse glioma model.
CONCLUSIONS: CD146 is a potential therapeutic target, and folic acid-conjugated NPs delivering siRNA may facilitate gene therapy in malignant gliomas. PMID: 32707539 [PubMed - as supplied by publisher]
Source: Journal of Neurosurgery - July 23, 2020 Category: Neurosurgery Authors: Fukui N, Yawata T, Nakajo T, Kawanishi Y, Higashi Y, Yamashita T, Aratake T, Honke K, Ueba T Tags: J Neurosurg Source Type: research

Sprouty2 —a Novel Therapeutic Target in the Nervous System?
AbstractClinical trials applying growth factors to alleviate symptoms of patients with neurological disorders have largely been unsuccessful in the past. As an alternative approach, growth factor receptors or components of their signal transduction machinery may be targeted directly. In recent years, the search for intracellular signaling integrator downstream of receptor tyrosine kinases provided valuable novel substrates. Among them are the Sprouty proteins which mainly act as inhibitors of growth factor-dependent neuronal and glial signaling pathways. In this review, we summarize the role of Sprouties in the lesioned ce...
Source: Molecular Neurobiology - May 7, 2019 Category: Neurology Source Type: research

Gene Therapy Leaves a Vicious Cycle
Reena Goswami1, Gayatri Subramanian2, Liliya Silayeva1, Isabelle Newkirk1, Deborah Doctor1, Karan Chawla2, Saurabh Chattopadhyay2, Dhyan Chandra3, Nageswararao Chilukuri1 and Venkaiah Betapudi1,4* 1Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States 2Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States 3Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States 4Department of Physiology and Biophysics, Case Western Reserve University, Clev...
Source: Frontiers in Oncology - April 23, 2019 Category: Cancer & Oncology Source Type: research

Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTP β/ζ Axis: Relevance in Therapeutic Development
Conclusion The expression of the components of the PTN-MK-RPTPβ/ζ axis in immune cells and in inflammatory diseases suggests important roles for this axis in inflammation. Pleiotrophin has been recently identified as a limiting factor of metainflammation, a chronic pathological state that contributes to neuroinflammation and neurodegeneration. Pleiotrophin also seems to potentiate acute neuroinflammation independently of the inflammatory stimulus while MK seems to play different -even opposite- roles in acute neuroinflammation depending on the stimulus. Which are the functions of MK and PTN in chronic neuroi...
Source: Frontiers in Pharmacology - April 11, 2019 Category: Drugs & Pharmacology Source Type: research