Filtered By:
Condition: Diabetes Type 1

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 127 results found since Jan 2013.

SLN124, a Galnac-siRNA Conjugate Targeting TMPRSS6, for the Treatment of Iron Overload and Ineffective Erythropoiesis Such As in Beta-Thalassemia
Accumulation of excess iron in tissues causes organ damage and dysfunction and may lead to serious clinical consequences including liver cirrhosis, diabetes, growth retardation and heart failure. Iron overload is a major health threat in iron loading anemias, like beta-thalassemia, myelodysplastic syndrome and in hereditary hemochromatosis. In patients with beta-thalassemia major, iron overload develops due to frequent blood transfusions to control the severe anemia. In addition, iron overload also occurs in patients with beta thalassemia intermedia (non-transfusion dependent beta-thalassemia). In the later cases, iron ove...
Source: Blood - November 21, 2018 Category: Hematology Authors: Altamura, S., Altamura, S., Muckenthaler, M. U., Dames, S., Frauendorf, C., Schubert, S., Aleku, M., Vadolas, J., Grigoriadis, G., Zugel, U. Tags: 102. Regulation of Iron Metabolism: Poster II Source Type: research

TonEBP Suppresses the HO-1 Gene by Blocking Recruitment of Nrf2 to Its Promoter
Discussion Dynamic changes in the functional phenotype of macrophages are associated with pathogenesis of inflammatory diseases (5–7). TonEBP primes macrophages toward an M1 phenotype, which has pro-inflammatory properties. TonEBP does this by promoting expression of pro-inflammatory genes via interaction with NF-κB (36) and by binding directly to the promoter (37, 64). In addition, TonEBP suppresses expression of the anti-inflammatory cytokine IL-10 by limiting chromatin access to the promoter (37). The pro-inflammatory function of TonEBP suggests that inhibiting its expression or activation could suppres...
Source: Frontiers in Immunology - April 17, 2019 Category: Allergy & Immunology Source Type: research

Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis
Conclusion: Our findings indicate that the positive role of RES in diabetic wound healing via its SIRT1-dependent endothelial protection and pro-angiogenic effects involves the inhibition of FOXO1 and the de-repression of c-Myc expression. Introduction Diabetes mellitus is a metabolic disease with an increasing incidence worldwide (Zimmet et al., 2014). The disease often leads to the development of serious complications such as microangiopathy, mainly including retinopathy, nephropathy, neuropathy, and diabetic non-healing skin ulcers (Zheng et al., 2018). Diabetic non-healing skin ulcers such as foot ulcers are ca...
Source: Frontiers in Pharmacology - April 23, 2019 Category: Drugs & Pharmacology Source Type: research

Tangshen Formula Alleviates Hepatic Steatosis by Inducing Autophagy Through the AMPK/SIRT1 Pathway
Conclusion In conclusion, the present study demonstrated that autophagy was involved in relieving the effects of TSF against NAFLD, which were mediated by the AMPK/SIRT1 pathway (Figure 7D). These findings may improve our current understanding of the role of TSF in treating hepatic steatosis and provide an experimental basis for the clinical application of TSF in NAFLD and its related metabolic syndrome. Ethics Statement This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Ethics Co...
Source: Frontiers in Physiology - April 25, 2019 Category: Physiology Source Type: research

Fibroblast growth factor 21 inhibition aggravates cardiac dysfunction in diabetic cardiomyopathy by improving lipid accumulation.
In conclusion, it is suggested that FGF21 may be a potentially useful agent in the treatment of DCM. PMID: 29375676 [PubMed]
Source: Experimental and Therapeutic Medicine - January 30, 2018 Category: General Medicine Tags: Exp Ther Med Source Type: research

Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation.
In conclusion, our present study demonstrates that endothelial mTORC1 deletion protects against hindlimb ischemic injury in diabetic mice possibly via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation. Therapeutics targeting mTORC1 may therefore represents a promising strategy to rescue limb ischemia in diabetes mellitus. PMID: 28473248 [PubMed - as supplied by publisher]
Source: Free Radical Biology and Medicine - May 1, 2017 Category: Biology Authors: Fan W, Han D, Sun Z, Ma S, Gao L, Chen J, Li X, Li X, Fan M, Li C, Hu D, Wang Y, Cao F Tags: Free Radic Biol Med Source Type: research

Long Non-coding RNA BC168687 is Involved in TRPV1-mediated Diabetic Neuropathic Pain in Rats
Publication date: 15 March 2018 Source:Neuroscience, Volume 374 Author(s): Chenglong Liu, Congcong Li, Zeyu Deng, Errong Du, Changshui Xu Long noncoding RNAs (lncRNAs) participate in a diverse range of molecular and biological processes, and dysregulation of lncRNAs has been observed in the pathogenesis of various human diseases. We observed alterations in mechanical withdrawal thresholds (MWT) and thermal withdrawal latencies (TWL) in streptozotocin (STZ)-induced diabetic rats treated with small interfering RNA (siRNA) of lncRNA BC168687. We detected expression of transient receptor potential vanilloid type 1 (TRPV1) in ...
Source: Neuroscience - February 23, 2018 Category: Neuroscience Source Type: research

The differentiation of human MSCs derived from adipose and amniotic tissues into insulin-producing cells, induced by PEI@Fe3O4 nanoparticles-mediated NRSF and SHH silencing.
Abstract Type 1 diabetes involves the immunologically mediated destruction of insulin‑producing cells (IPCs) in the pancreatic islet. Mesenchymal stem cells (MSCs) have the ability to differentiate into IPCs and have become the most promising means for diabetes therapy. The present study demonstrated that human adipose‑derived stem cells (hADSCs) and human amniotic MSCs (hAMSCs) are able to differentiate into functional IPCs by knocking down neuronal restrictive silencing factor (NRSF) and Sonic hedgehog (SHH). In the current study, PEI@Fe3O4 nanoparticles (NPs) were used to deliver NRSF small interfering (si)...
Source: International Journal of Molecular Medicine - August 14, 2018 Category: Molecular Biology Authors: Wang R, Zhang D, Zhang T, Zhao F, Lang H, Lin X, Pang X Tags: Int J Mol Med Source Type: research

TNFAIP3 is anti-inflammatory in the retinal vasculature
CONCLUSIONS: TNFAIP3 serves as an anti-inflammatory factor in the retinal vasculature. Epac1 regulates TNFAIP3. TNFAIP3 may offer a new mechanism for regulating inflammation and permeability in the retinal vasculature.PMID:36034737 | PMC:PMC9352365
Source: Molecular Vision - August 29, 2022 Category: Molecular Biology Authors: Li Liu Youde Jiang Jena J Steinle Source Type: research