Integrative transcriptomics analysis of lung epithelial cells and identification of repurposable drug candidates for COVID-19.

In this study, we aimed to decode molecular signatures and pathways of the host cells in response to SARS-CoV-2 and the rapid identification of repurposable drugs using bioinformatics and network biology strategies. We have analyzed available transcriptomic RNA-seq COVID-19 data to identify differentially expressed genes (DEGs). We detected 177 DEGs specific for COVID-19 where 122 were upregulated and 55 were downregulated compared to control (FDR<0.05 and logFC ≥ 1). The DEGs were significantly involved in the immune and inflammatory response. The pathway analysis revealed the DEGs were found in influenza A, measles, cytokine signaling in the immune system, interleukin-4, interleukin -13, interleukin -17 signaling, and TNF signaling pathways. Protein-protein interaction analysis showed 10 hub genes (BIRC3, ICAM1, IRAK2, MAP3K8, S100A8, SOCS3, STAT5A, TNF, TNFAIP3, TNIP1). The regulatory network analysis showed significant transcription factors (TFs) that target DEGs, namely FOXC1, GATA2, YY1, FOXL1, NFKB1. Finally, drug repositioning analysis was performed with these 10 hub genes and showed that in silico validated three drugs with molecular docking. The transcriptomics signatures, molecular pathways, and regulatory biomolecules shed light on candidate biomarkers and drug targets which have potential roles to manage COVID-19. ICAM1 and TNFAIP3 were the key hubs that have demonstrated good binding affinities with repurposed drug candidates. Dabrafenib, radicicol, and...
Source: European Journal of Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharmacol Source Type: research