Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels.

Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. Adv Exp Med Biol. 2019;1135:119-138 Authors: Rosenhouse-Dantsker A Abstract Inwardly rectifying potassium (Kir) channels play a variety of critical cellular roles including modulating membrane excitability in neurons, cardiomyocytes and muscle cells, and setting the resting membrane potential, heart rate, vascular tone, insulin release, and salt flow across epithelia. These processes are regulated by a variegated list of modulators. In particular, in recent years, cholesterol has been shown to modulate a growing number of Kir channels. Subsequent to the discovery that members of the Kir2 subfamily were down-regulated by cholesterol, we have shown that members of several other Kir subfamilies were also modulated by cholesterol. However, not all cholesterol sensitive Kir channels were down-regulated by cholesterol. Our recent studies focused on three Kir channels: Kir2.1 (IRK1), Kir3.2^ (GIRK2^) and Kir3.4* (GIRK4*). Among these, Kir2.1 was down-regulated by cholesterol whereas Kir3.2^ and Kir3.4* were both up-regulated by cholesterol. Despite the opposite impact of cholesterol on these Kir3 channels compared to Kir2.1, putative cholesterol binding sites in all three channels were identified in equivalent transmembrane domains. Interestingly, however, there are intriguing differences in the specific residues that interact with the cholesterol molecule in these Kir cha...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research