Mesenchymal Stem Cell Therapy Aids Spinal Cord Regeneration in Rats

Arguably the most reliable of first generation stem cell therapies is the transplantation of mesenchymal stem cells. The cells don't last long in the recipient, which is a problem characteristic of all such cell therapies, but the signals they secrete while still alive act to change native cell behavior and suppress inflammation for an extended period of time. Since chronic inflammation degrades tissue maintenance and regeneration, this respite can allow some degree of healing that wouldn't have otherwise occurred - though that benefit is much less reliable than the initial suppression of inflammation. In the study reported here, researchers turn this set of mechanisms towards regeneration from spinal injury, demonstrating improvements in rats. This is still a long way from comprehensive repair, and much of the discussion centers around just how variable and poorly controlled the cell behavior is in this "most reliable" of cell therapies, but it is a good deal better than failing to intervene in the inflammation that causes scarring following nerve injury. Nerves are in principle capable of regeneration in absence of that scar formation: the mechanisms to support that regeneration exist in mammals, but are not deployed at the right time and in the right way. One line item is the behavior of macrophages, an important player in the intricate dance of cell types involved in regeneration, and whether they adopt the beneficial M2 polarization or the inflammatory M1 polariza...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs