Sphingolipids in Genetic and Acquired Forms of Chronic Kidney Diseases.

Sphingolipids in Genetic and Acquired Forms of Chronic Kidney Diseases. Curr Med Chem. 2017 Jan 12; Authors: Ueda N Abstract Sphingolipids (SLs) regulate apoptosis, proliferation, and stress response. SLs, including ceramide, glycosphingolipids (glucosylceramide, lactosylceramide, and gangliosides) and sphingosine-1-phosphate (S1P), play a role in the pathogenesis and progression of genetic (lysosomal storage disease, congenital nephrotic syndrome and polycystic kidney disease) and non-genetic forms of chronic kidney diseases (CKDs). SLs metabolism defects promote complications (cardiovascular events, etc.) via oxidant stress in CKDs. A balancing role of apoptotic SLs and anti-apoptotic S1P is crucial in the regulation of glomerular injury and complications associated with CKDs. Interaction between SLs, endothelial function and renin-angiotensin-aldosterone system (RAAS) plays an important role in the regulation of glomerular injury. SLs affect mitochondrial function that regulate the opening of mitochondrial permeability transition (MPT) pore, mitochondrial outer membrane permeability (MOMP), generation of reactive oxygen species (ROS), Bcl-2 family proteins, leading to cytochrome c release and caspase activation, leading to apoptosis, and regulate glomerular cell proliferation or renal fibrosis. Interaction between SLs, endothelial function and RAAS plays a role in the regulation of glomerular injury. This review article summarizes...
Source: Current Medicinal Chemistry - Category: Chemistry Authors: Tags: Curr Med Chem Source Type: research