DNA Damage and Consequent Inflammation in Heart Failure

One of the ways in which cell damage characteristic of aging can provoke inflammation is via the mislocalization of DNA. Either nuclear DNA or mitochondrial DNA can find its way to the cytosol, where it can trigger responses evolved to detect bacterial or viral infection, or severe cell damage. This creates a cascade of downstream signaling leading to an inflammatory response. In youth these events occur comparatively rarely, and in circumstances wherein immune response and potentially even cell death are beneficial. With age, however, there is a continued mild but growing level of dysfunction and consequent sustained inflammation that is never fully resolved. Such continual inflammatory signaling is disruptive to cell and tissue function, and is thought to be an important contributing factor in degenerative aging. In today's open access paper, researchers examine the contribution of nuclear DNA mislocalization to one specific form of heart failures://en.wikipedia.org/wiki/Heart_failure">heart failure, dilated cardiomyopathy, in which the heart becomes enlarged and weakened in response to poorly understood causes. The researchers examine human tissues with an eye to validating data obtained in animal models. The overall picture is that stress on cells in the heart leads to an excessive pace of DNA double strand breaks, which in turn enables DNA fragments to escape from the nucleus into the cytosol. There, the inflammatory reaction takes over. Sustained inflammation in ...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs