Retinal Cells that Can Integrate into Tissue and Survive Following Transplantation

One of the biggest challenges in regenerative medicine is ensuring the long-term survival and integration into tissue of any meaningful fraction of transplanted cells. Most transplanted cells simply die. Most early cell therapies achieve benefits via the signaling generated by transplanted cells, in the short period of time before they die. Numerous approaches are under development to try to ensure long-term survival of transplanted cells, but successes have so far been few and far between. Here, researchers report on one of these successes, generating retinal cells that integrate into the retina to produce tissue regeneration. Researchers have presented the first successful attempt to generate retinal cells that can integrate into the retina. Retinal ganglion cells (RGCs), commonly damaged in glaucoma, are responsible for the transmission of visual information. The scientists managed to not only grow neurons (retinal ganglion cells are considered specialized neurons), but also transplant them into the eyes of mice, achieving the correct ingrowth of artificial retinal tissue. Without treatment, glaucoma can lead to irreversible damage to the optic nerve and, as a result, the loss of part of the visual field. Progression of this disease can lead to complete blindness. Retinal cells were grown using special organoids, with the tissue formed in a petri dish. These cells were subsequently transplanted into several groups of mice. "Our studies in mice have shed lig...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs