Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus

Publication date: Available online 24 October 2019Source: Aquatic ToxicologyAuthor(s): Fritzie T. Celino-Brady, Cody K. Petro-Sakuma, Jason P. Breves, Darren T. Lerner, Andre P. SealeAbstractIt is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1.0 µg/L) and NP (10 and 100 µg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 µg/L) while hepatosomatic index was decreased by exposure to NP (100 µg/L). Exposure to E2 (0.1 µg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1.0 µg/L), and both concentrations of NP, increased hepatic insulin-like ...
Source: Aquatic Toxicology - Category: Toxicology Source Type: research