Targeting GAS1 to Put Muscle Stem Cells Back to Work in Old Tissues

A great many projects at various stages of development are characterized by their goal of forcing greater stem cell activity in old tissues, but without meaningfully addressing the underlying causes of stem cell decline in later life. This sort of research and development operates at the level of proximate causes, adjusting protein levels to change cell behavior. Among the potential therapies I'd place into this category: telomerase gene therapy; GDF11 upregulation; FGF2 inhibition; NAD+ upregulation; and so on. Muscle stem cells known as satellite cells are one of the better studied stem cell populations in this context, and many of the interventions are focused here. Today's open access research is a representative example, in that the authors describe a portion of the network of genes and proteins that control stem cell behavior, finding that it can be adjusted in order to force greater activity, overriding the normal reaction to an aged and damaged environment. The loss of stem cell activity with age is thought to be an evolved response to rising levels of DNA damage, inflammation, and immune dysfunction that serves to reduce risk of early death by cancer, at the cost of a certain later decline into frailty. It is a part of the parcel of adjustments that lead our lengthy life spans in comparison to other similarly sized mammals. There has been, and still is, concern that putting cells back to work in this sort of way, without fixing the problems that lead to cance...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs