Ameliorating the adverse cardiorespiratory effects of chemical immobilization by inducing general anaesthesia in sheep and goats: implications for physiological studies of large wild mammals

AbstractChemical immobilization is necessary for the physiological study of large wild animals. However, the immobilizing drugs can adversely affect the cardiovascular and respiratory systems, yielding data that do not accurately represent the normal, resting state. We hypothesize that these adverse effects can be ameliorated by reversing the immobilizing agent while holding the animal under general anaesthesia. We used habituated sheepOvis aries (N = 5, 46.9 ± 5.3 kg body mass, mean ± SEM) and goatsCapra hircus (N = 4, 27.7 ± 2.8 kg) as ungulate models for large wild animals, and measured their cardiorespiratory function under three conditions: (1) mild sedation (midazolam), as a proxy for the normal resting state, (2) immobilization (etorphine and azaperone), and (3) general anaesthesia (propofol) followed by etorphine antagonism (naltrexone). Cardiac output for both sheep and goats remained unchanged across the three conditions (overall means of 6.2 ± 0.9 and 3.3 ± 0.3 L min−1, respectively). For both sheep and goats, systemic and pulmonary mean arterial pressures were significantly altered from initial midazolam levels when administered etorphine  + azaperone, but those arterial pressures were restored upon transition to propofol anaesthesia and antagonism of the etorphine. Under etorphine + azaperone, minute ventilation decreased in the sheep, though this decrease was corrected under propofol, while the minute ventilation in ...
Source: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology - Category: Physiology Source Type: research