Demonstrating Decellularized Heart Valves

Decellularization of donor organs and tissue sections has been demonstrated in laboratory animals and trialed in humans for some years now. It is clearly an improvement over straight organ donation in that it greatly reduces transplant rejection, and may even put a dent in the issue of organ availability by allowing the xenotransplantation of pig organs repopulated with human cells. Absent some bold, unexpected, and rapid advances in tissue engineering, I would expect that decellularization will become the mainstay technology for organ and tissue transplantation for the next two decades or so. The process of removing cells from tissue while leaving behind the extracellular matrix and its chemical guides is comparatively simple and it dovetails well with present progress in control over stem cells and cell growth, enabling emptied organs to be reliably repopulated with a patient's own cells and made to work once again. Further, it circumvents a very hard problem, which is to say the challenge of creating an artificial scaffold that works as well as a biological extracellular matrix for these purposes. That has only been effectively achieved for small amounts of comparatively simple tissues such as muscle, and even there the real thing is generally better. There is a way to go yet in tissue engineering before decellularization will cease to be an extremely useful technology. These publicity materials note recent work on engineering replacement heart valves for children using ...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs