A Smad7 Gene Therapy to Inhibit Age-Related Muscle Loss is in Development

There are always many ways to influence any specific process in cells and tissues. When it comes to enhanced muscle growth, the most popular approaches so far are myostatin inhibition, such as via gene knockout or the use of antibodies, or increased levels of the myostatin inhibitor follistatin. Both of these have been shown to greatly increase muscle mass in a number of species, and are thus potential treatments to compensate for the loss of muscle mass and strength that occurs over the course of aging. Physical weakness is a large component of age-related frailty, and even partially removing that part of the aging process is a worthy goal. The research group noted here has taken a different approach to this area of biochemistry, targeting smad7 to inhibit processes that break down muscle tissue: "Chronic disease affects more than half of the world's population. It occurs with chronic infection, muscular dystrophy, malnutrition and old age. About half the people who die from cancer are actually dying from muscle wasting. What kills a lot of people isn't the loss of skeletal muscle but heart muscle. The heart literally shrinks, causing heart failure." In cachexia, tumors secrete hormones that cause muscle deterioration; in effect, the body eats its own muscles, causing weakness, frailty and fatigue. Researchers have long sought to stop this process, but failed to find a safe way. That's because the hormones that cause wasting - in particular, a naturally occurring ho...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs