High Fat Diet –Wheat Gliadin Interaction and its Implication for Obesity and Celiac Disease Onset: In Vivo Studies

Wheat gluten may play a role for development of life-style related diseases in populations on a high fat diet. Mice feed high fat diet show that wheat gliadin consumption affects glucose and lipid metabolic homeostasis, alters the gut microbiota and the immune cell profile in liver. AbstractThe intestinal immune system plays a crucial role in obesity and insulin resistance. An altered intestinal immunity is associated with changes to the gut microbiota, barrier function, and tolerance to luminal antigens. Lipid metabolism and its unbalance can also contribute to acute and chronic inflammation in different conditions. In celiac disease (CD), the serum phospholipid profile in infants who developed CD is dramatically different when compared to that of infants at risk of CD not developing the disease. In a mouse model of gluten sensitivity, oral wheat gliadin challenge in connection with inhibition of the metabolism of arachidonic acid, an omega-6 polyunsaturated fatty acid, specifically induces the enteropathy. Recent evidence suggests that gluten may play a role also for development of life-style related diseases in populations on a high fat diet (HFD). However, the mechanisms behind these effects are not yet understood. Exploratory studies in mice feed HFD show that wheat gliadin consumption affects glucose and lipid metabolic homeostasis, alters the gut microbiota, and the immune cell profile in liver.
Source: Molecular Nutrition and Food Research - Category: Food Science Authors: Tags: Review Source Type: research