Mitochondrial quality control in non-exudative age-related macular degeneration: From molecular mechanisms to structural and functional recovery

Free Radic Biol Med. 2024 Apr 3:S0891-5849(24)00161-8. doi: 10.1016/j.freeradbiomed.2024.03.024. Online ahead of print.ABSTRACTNon-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and d...
Source: Free Radical Biology and Medicine - Category: Biology Authors: Source Type: research