Feeling full? Researchers pinpoint neurons that prevent eating too much, too

As millions in the United States settle down to Thanksgiving dinner this week, few will be pondering a major question in neuroscience: Why, when so much of life across the animal kingdom revolves around finding and consuming food, do we ever stop eating? Scientists have identified brain regions and even specific cells involved in terminating meals. But exactly how this process is coordinated remains murky. Now, using brain recordings from mice tucking into food, researchers have for the first time identified how specific neurons in a region called the caudal nucleus of the solitary tract (cNTS) switch on during a meal to slow down and eventually end eating. “Nobody has really been able to [do this] in awake, behaving animals” before, says Nicholas Betley, a neuroscientist at the University of Pennsylvania who was not involved in the work. The findings, published today in Nature , suggest the brain manages a coordinated sequence of behavioral responses to food as it travels from the mouth through the gastrointestinal tract, and could provide new insight into humans’ eating behaviors and disorders, he adds. Previous research on what causes animals to stop eating has largely focused on two types of cells located in the cNTS. One is prolactin-releasing hormone (PRLH) neurons, which have been linked to many functions, including the inhibition of feeding behavior. The other is GCG neurons, which produce glucagon-like peptide-1—...
Source: ScienceNOW - Category: Science Source Type: news