Transcriptome analysis of the cerebral cortex of acrylamide-exposed wild-type and IL-1 β-knockout mice

We reported recently that deletion of IL-1β gene exacerbates ACR-induced neurotoxicity in mice. The aim of this study was to identify genes or signaling pathway(s) involved in enhancement of ACR-induced neurotoxicity by IL-1β gene deletion or ACR-induced neurotoxicity to generate a hypothesis mechanism explaining ACR-induced neurotoxicity. C57BL/6 J wild-type and IL-1β KO mice were exposed to ACR at 0, 12.5, 25 mg/kg by oral gavage for 7 days/week for 4 weeks, followed by extraction of mRNA from mice cerebral cortex for RNA sequence analysis. IL-1β deletion altered the expression of genes involved in extracellular region, including upregulation of PFN1 gene related to amyotrophic lateral sclerosis and increased the expression of the opposite strand of IL-1β. Acrylamide exposure enhanced mitochondria oxidative phosphorylation, synapse and ribosome pathways, and activated various pathways of different neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, Huntington disease, and prion disease. Protein network analysis suggested the involvement of different proteins in related to learning and cognitive function, such as Egr1, Egr2, Fos, Nr4a1, and Btg2. Our results identified possible pathways involved in IL-1β deletion-potentiated and ACR-induced neurotoxicity in mice.PMID:37971544 | DOI:10.1007/s00204-023-03627-9
Source: Archives of Toxicology - Category: Toxicology Authors: Source Type: research