Multiple Administration Routes, Including Intramuscular Injection, of Oncolytic Tanapoxvirus Variants Significantly Regress Human Melanoma Xenografts in BALB/c Nude Mice Reconstituted with Splenocytes from Normal BALB/c Donors

In this study, TPV/Δ66R/mIL-2 and TPV/Δ2L/Δ66R/FliC were tested for their ability to treat human melanoma xenografts (SK-MEL3) in a BALB/c nude mouse model reconstituted with splenocytes from genetically compatible, normal BALB/c donor mice. Two SK-MEL3 tumors were transplanted into each flank of BALB/c nude mice, and the larger tumor was treated intratumorally (IT) with virus or mock injection. In one set of animals, mice received adoptive transfers of splenocytes from BALB/c mice on day 4 to reconstitute their immune systems and allow for adaptive immune responses to occur in a xenograft model. Direct IT injection of TPV/Δ66R/mIL-2 led to significantly greater rates of tumor regression compared to reconstituted control (RC) mice in the primary and distant tumor sites, whereas TPV/Δ2L/Δ66R/FliC treatment led to significantly greater rates of tumor regression in distant tumor sites only. A second experiment used TPV/Δ66R/mIL-2 to test whether TPV could be administered intravenously (IV), intramuscularly (IM), or both routes simultaneously to exert similar anti-tumor effects in an indirectly treated tumor. A single SK-MEL3 tumor was transplanted into one flank of BALB/c nude mice and was treated either into the tail vein, the nearest rear leg to the tumor, or both. All mice then received adoptive transfers of splenocytes in the same way as previously described on day 4 and received an additional TPV treatment on day 14. The results demonstrated that TPV/Δ66R/mIL-2 trea...
Source: Herpes - Category: Infectious Diseases Authors: Source Type: research