The Tradeoff of Working with Short-Lived Laboratory Species

It is cheaper and faster to study aging - and potential approaches to treat aging - in short-lived species. The disadvantage is that much of what is learned and achieved will be irrelevant to aging as it occurs in longer-lived species such as our own. The response to calorie restriction, an upregulation of cellular housekeeping mechanisms that lengthens life, fortunately evolved early on in the development of life, and the biochemistry is surprisingly consistent even across widely divergent species. Thus much can be learned of it in lower animals with short life spans. Unfortunately, it turns out that this class of intervention doesn't affect life span in longer-lived species like our own to anywhere near the degree it does in short-lived species. This is the tradeoff of working with short-lived models, in a nutshell: more can be done, but all of that work may turn out to be of very limited utility. Wouldn't it actually accelerate progress if we instead did most testing in far shorter-lived animals, like the roundworm C. elegans or the fruit fly Drosophila? On its face, that's a totally reasonable question: time is ticking for all of us, and we want to get longevity therapeutics into people's hands as quickly as possible! And certainly these short-lived animals have taught us a lot about the roles of different biological signaling pathways. Some interventions that work in C. elegans act by altering the worms' early developmental processes, which isn't terribly...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs