Sphingosine-1-phosphate: metabolism, transport, atheroprotection and effect of statin treatment

Purpose of review To better define the metabolism of sphingosine-1-phosphate (S1P), its transport in plasma and its interactions with S1P receptors on vascular cells, and to evaluate the effect of statin treatment on the subnormal plasma levels of high-density lipoprotein (HDL)-bound S1P characteristic of the atherogenic dyslipidemia of metabolic syndrome (MetS). Recent findings Neither clinical intervention trials targeted to raising high-density lipoprotein-cholesterol (HDL-C) levels nor human genome-wide association studies (GWAS) studies have provided evidence to support an atheroprotective role of HDL. Recently however a large monogenic univariable Mendelian randomization on the N396S mutation in the gene encoding endothelial lipase revealed a causal protective effect of elevated HDL-C on coronary artery disease conferred by reduced enzyme activity. Given the complexity of the HDL lipidome and proteome, components of HDL other than cholesterol may in all likelihood contribute to such a protective effect. Among HDL lipids, S1P is a bioactive sphingolipid present in a small proportion of HDL particles (about 5%); indeed, S1P is preferentially enriched in small dense HDL3. As S1P is bound to apolipoprotein (apo) M in HDL, such enrichment is consistent with the elevated apoM concentration in HDL3. When HDL/apoM-bound S1P acts on S1P1 or S1P3 receptors in endothelial cells, potent antiatherogenic and vasculoprotective effects are exerted; those exerted by albumin-b...
Source: Current Opinion in Lipidology - Category: Lipidology Tags: LIPID METABOLISM: Edited by John Chapman Source Type: research