Filtered By:
Source: Molecular Neurobiology

This page shows you your search results in order of date. This is page number 7.

Order by Relevance | Date

Total 278 results found since Jan 2013.

Circular RNA 0025984 Ameliorates Ischemic Stroke Injury and Protects Astrocytes Through miR-143-3p/TET1/ORP150 Pathway
AbstractMiR-143-3p is aberrantly expressed in patients with ischemic stroke and associated with ischemic brain injury. However, the underlying mechanisms are largely unknown. Here, we confirmed circ_0025984 and TET1 as a sponge and target of miR-143-3p, respectively, by luciferase reporter assay. In astrocytes, OGD significantly decreased circ_0025984 and TET1 levels but increased miR-143-3p levels, which was also observed in brains of mice with MCAO. Treatment with miR-143-3p inhibitor or circ_0025984 significantly decreased astrocyte apoptosis and autophagy, as well as cerebral injury and neuron loss in mice with MCAO. N...
Source: Molecular Neurobiology - August 25, 2021 Category: Neurology Source Type: research

Effect of Anti-inflammatory Treatment with AMD3100 and CX3CR1 Deficiency on GABAA Receptor Subunit and Expression of Glutamate Decarboxylase Isoforms After Stroke
AbstractFollowing stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1 ′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 ...
Source: Molecular Neurobiology - August 20, 2021 Category: Neurology Source Type: research

Generation and Role of Calpain-Cleaved 17-kDa Tau Fragment in Acute Ischemic Stroke
In this study, we observed the accumulation of 17-kDa tau fragment in cultured primary neurons and media after oxygen-glucose deprivation/reperfusion (OGD/R) treatment that could be diminished by the presence of a calpain inhibitor. This calpa in-mediated proteolytic tau fragment was also detected in brain tissues from middle cerebral artery occlusion–injured rats and acute ischemic stroke patients receiving strokectomy, and human plasma samples collected within 48 h after the onset of stroke. The mass spectrometry analysis of this 17-k Da fragment identified 2 peptide sequences containing 195–224 amino acids of tau, w...
Source: Molecular Neurobiology - August 19, 2021 Category: Neurology Source Type: research

Preconditioning Exercise in Rats Attenuates Early Brain Injury Resulting from Subarachnoid Hemorrhage by Reducing Oxidative Stress, Inflammation, and Neuronal Apoptosis
AbstractSubarachnoid hemorrhage (SAH) is a catastrophic form of stroke responsible for significant morbidity and mortality. Oxidative stress, inflammation, and neuronal apoptosis are important in the pathogenesis of early brain injury (EBI) following SAH. Preconditioning exercise confers neuroprotective effects, mitigating EBI; however, the basis for such protection is unknown. We investigated the effects of preconditioning exercise on brain damage and sensorimotor function after SAH. Male rats were assigned to either a sham-operated (Sham) group, exercise (Ex) group, or no-exercise (No-Ex) group. After a 3-week exercise p...
Source: Molecular Neurobiology - August 9, 2021 Category: Neurology Source Type: research

SETD3 Downregulation Mediates PTEN Upregulation-Induced Ischemic Neuronal Death Through Suppression of Actin Polymerization and Mitochondrial Function
AbstractSET domain protein 3 (SETD3) is an actin-specific methyltransferase, a rare post-translational modification with limited known biological functions. Till now, the function of SETD3 in cerebral ischemia-reperfusion (I/R)-induced injury remains unknown. Here, we show that the protein level of SETD3 is decreased in rat neurons after cerebral I/R injury. SETD3 promotes neuronal survival after both glucose and oxygen deprivation/reoxygenation (OGD/R) and cerebral I/R injury, and knockdown of SETD3 increases OGD/R-induced neuronal death. We further show that OGD/R-induced downregulation of SETD3 leads to the decrease of ...
Source: Molecular Neurobiology - July 3, 2021 Category: Neurology Source Type: research

Remote Ischemic Postconditioning vs. Physical Exercise After Stroke: an Alternative Rehabilitation Strategy?
AbstractThere remain debates on neuroprotection and rehabilitation techniques for acute ischemic stroke patients. Therapeutic physical exercise following stroke has shown promise but is challenging to apply clinically. Ischemic conditioning, which has several clinical advantages, is a potential neuroprotective method for stroke rehabilitation that is less understood. In the present study, the rehabilitative properties and mechanisms of physical exercise and remote ischemic postconditioning (RIPostC) after stroke were compared and determined. A total of 248 adult male Sprague-Dawley rats were divided into five groups: (1) s...
Source: Molecular Neurobiology - July 1, 2021 Category: Neurology Source Type: research

Construction of lncRNA-Mediated ceRNA Network for Investigating Immune Pathogenesis of Ischemic Stroke
AbstractIschemic stroke (IS) is a common and serious neurological disease. Extensive evidence indicates that activation of the immune system contributes significantly to the development of IS pathology. In recent years, some long non-coding RNAs (lncRNAs), acting as competing endogenous RNAs (ceRNAs), have been reported to affect IS process, especially the immunological response after stroke. However, the roles of lncRNA-mediated ceRNAs in immune pathogenesis of IS are not systemically investigated. In the present study, we generated a global immune-related ceRNA network containing immune-related genes (IRGs), miRNAs, and ...
Source: Molecular Neurobiology - June 26, 2021 Category: Neurology Source Type: research

COVID-19 Infection and Circulating Microparticles —Reviewing Evidence as Microthrombogenic Risk Factor for Cerebral Small Vessel Disease
AbstractSevere acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (C...
Source: Molecular Neurobiology - June 26, 2021 Category: Neurology Source Type: research

G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential
AbstractIn ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiolog...
Source: Molecular Neurobiology - June 12, 2021 Category: Neurology Source Type: research

Circulating lncRNAs HIF1A-AS2 and LINLK-A: Role and Relation to Hypoxia-Inducible Factor-1 α in Cerebral Stroke Patients
This study investigated the expression of lncRNAs HIF1A-AS2 and LINK-A, and their target gene hypoxia-inducible factor-1 (HIF-1) in Egyptian stroke patients. It also aimed to determine the molecular mechanism implicated in the disease. A total of 75 stroke patients were divided into three clinical subgroups, besides 25 healthy controls of age-matched and sex-matched. Remarkable upregulation of lncRNA HIF1A-AS2 and HIF1- α along with a downregulation of lncRNA LINK-A was noticed in all stroke groups relative to controls. Serum levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated-Akt (p-Akt), vascular endothelial ...
Source: Molecular Neurobiology - June 5, 2021 Category: Neurology Source Type: research

Obscure Involvement of MYC in Neurodegenerative Diseases and Neuronal Repair
AbstractMYC is well known as a potent oncogene involved in regulating cell cycle and metabolism. Augmented MYC expression leads to cell cycle dysregulation, intense cell proliferation, and carcinogenesis. Surprisingly, its increased expression in neurons does not induce their proliferation, but leads to neuronal cell death and consequent development of a neurodegenerative phenotype. Interestingly, while cancer and neurodegenerative diseases such as Alzheimer ’s disease are placed at the opposite sides of cell division spectrum, both start with cell cycle dysregulation and stimulation of proliferation. It seems that MYC a...
Source: Molecular Neurobiology - May 5, 2021 Category: Neurology Source Type: research

Integrative Multi-omics Analysis to Characterize Human Brain Ischemia
AbstractStroke is a major cause of death and disability. A better comprehension of stroke pathophysiology is fundamental to reduce its dramatic outcome. The use of high-throughput unbiasedomics approaches and the integration of these data might deepen the knowledge of stroke at the molecular level, depicting the interaction between different molecular units. We aimed to identify protein and gene expression changes in the human brain after ischemia through an integrative approach to join the information of bothomics analyses. The translational potential of our results was explored in a pilot study with blood samples from is...
Source: Molecular Neurobiology - May 3, 2021 Category: Neurology Source Type: research

Modulation of Brain Pathology by Enhancer RNAs in Cerebral Ischemia
AbstractRecent studies have reported widespread stimulus-dependent transcription of mammalian enhancers into noncoding enhancer RNAs (eRNAs), some of which have central roles in the enhancer-mediated induction of target genes and modulation of phenotypic outcomes during development and disease. In cerebral ischemia, the expression and functions of eRNAs are virtually unknown. Here, we applied genome-wide H3K27ac ChIP-seq and genome-wide RNA-seq to identify enhancer elements and stroke-induced eRNAs, respectively, in the mouse cerebral cortex during transient focal ischemia. Following a 1-h middle cerebral artery occlusion ...
Source: Molecular Neurobiology - March 5, 2021 Category: Neurology Source Type: research

Long Non-coding RNAs as Promising Therapeutic Approach in Ischemic Stroke: a Comprehensive Review
AbstractIn recent years, ischemic stroke (IS) has been one of the major causes of disability and mortality worldwide. The general mechanism of IS is based on reduced blood supply to neuronal tissue, resulting in neuronal cell damage by various pathological reactions. One of the main techniques for acute IS treatment entails advanced surgical approaches for restoration of cerebral blood supply but this is often associated with secondary brain injury, also known as ischemic reperfusion injury (I/R injury). Many researches have come to emphasize the significant role of long non-coding RNAs (lncRNAs) in IS, especially in I/R i...
Source: Molecular Neurobiology - March 5, 2021 Category: Neurology Source Type: research

Stroke-Induced Peripheral Immune Dysfunction in Vitamin D –Deficient Conditions: Modulation by Progesterone and Vitamin D
AbstractVitamin D deficiency (Ddef) alters morphology and outcomes after a stroke. We investigated the interaction of Ddef following post-stroke systemic inflammation and evaluated whether administration of progesterone (P) or vitamin D (D) will improve outcomes. Ddef rats underwent stroke with lipopolysaccharide (LPS)-induced systemic inflammation. Rats were randomly divided into 9 groups and treated with P, D, or vehicle for 4 days. At day 4, rats were tested on different behavioral parameters. Markers of neuronal inflammation, endoplasmic reticulum stress, oxidative stress, white matter integrity, and apoptosis were mea...
Source: Molecular Neurobiology - February 11, 2021 Category: Neurology Source Type: research