Filtered By:
Source: Molecular Neurobiology

This page shows you your search results in order of date. This is page number 2.

Order by Relevance | Date

Total 278 results found since Jan 2013.

Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage
This study is the first to demonstrate the neuroprotective effects of PIC on OB injury after SAH. It suggests that PIC would be a potential therapeutic agent for alleviating OB injury after SAH.
Source: Molecular Neurobiology - May 28, 2023 Category: Neurology Source Type: research

miR-671-5p Upregulation Attenuates Blood –Brain Barrier Disruption in the Ischemia Stroke Model Via the NF-кB/MMP-9 Signaling Pathway
AbstractBlood-brain barrier (BBB) disruption can induce further hemorrhagic transformation in ischemic stroke (IS). miR-671-5p, a micro-RNA, is abundant in the cortex of mammalian brains. Herein, we investigated the roles and potential mechanisms for the effects of miR-671-5p on BBB permeability in IS. Results showed that miR-671-5p levels were significantly downregulated in the cerebral cortex of middle cerebral artery occlusion/reperfusion (MCAO/R) C57/BL6 micein vivo. miR-671-5p agomir administration via right intracerebroventricular injection significantly reduced infarct volume, improved neurological deficits, the axo...
Source: Molecular Neurobiology - May 28, 2023 Category: Neurology Source Type: research

Epigenetic Regulation of Ferroptosis in Central Nervous System Diseases
AbstractFerroptosis, a newly identified form of cell death, is characterized by iron overload and accumulation of lipid reactive oxygen species. Inactivation of pathways, such as glutathione/glutathione peroxidase 4, NAD(P)H/ferroptosis suppressor protein 1/ubiquinone, dihydroorotate dehydrogenase/ubiquinol, or guanosine triphosphate cyclohydrolase-1/6(R)-l-erythro-5,6,7,8-tetrahydrobiopterin pathways, have been found to induce ferroptosis. The accumulating data suggest that epigenetic regulation can determine cell sensitivity to ferroptosis at both the transcriptional and translational levels. While many of the effectors ...
Source: Molecular Neurobiology - May 28, 2023 Category: Neurology Source Type: research

MiR-17-5p Mediates the Effects of ACE2-Enriched Endothelial Progenitor Cell-Derived Exosomes on Ameliorating Cerebral Ischemic Injury in Aged Mice
AbstractAging is one of the key mechanisms of vascular dysfunction and contributes to the initiation and progression of ischemic stroke (IS). Our previous study demonstrated that ACE2 priming enhanced the protective effects of exosomes derived from endothelial progenitor cells (EPC-EXs) on hypoxia-induced injury in aging endothelial cells (ECs). Here, we aimed to investigate whether ACE2-enriched EPC-EXs (ACE2-EPC-EXs) could attenuate brain ischemic injury by inhibiting cerebral EC damage through their carried miR-17-5p and the underlying molecular mechanisms. The enriched miRs in ACE2-EPC-EXs were screened using the miR s...
Source: Molecular Neurobiology - April 22, 2023 Category: Neurology Source Type: research

Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection
In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3  days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum...
Source: Molecular Neurobiology - April 22, 2023 Category: Neurology Source Type: research

From Hair to the Brain: The Short-Term Therapeutic Potential of Human Hair Follicle-Derived Stem Cells and Their Conditioned Medium in a Rat Model of Stroke
We describe here for the first time the therapeutic potential of human hair follicle-derived stem cells (hHFSCs) and their conditioned medium (CM) in a rat model of IS. Furthermore, we hypothesized that a combination of cell therapy with repeated CM administration might enhance the restorative efficiency of this approach compared to each treatment alone. Middle cerebral artery occlusion was performed for 30  min to induce IS. Immediately after reperfusion, hHFSCs were transplanted through the intra-arterial route and/or hHFSC-CM administered intranasally. The neurological outcomes, short-term spatial working memory, and i...
Source: Molecular Neurobiology - March 25, 2023 Category: Neurology Source Type: research

Lnc_000048 Promotes Histone H3K4 Methylation of MAP2K2 to Reduce Plaque Stability by Recruiting KDM1A in Carotid Atherosclerosis
AbstractStabilizing and inhibiting plaque formation is a key challenge for preventing and treating ischemic stroke. KDM1A-mediated histone modifications, which involved in the development of training immunity, ultimately exacerbate the outcomes of inflammation. Although lncRNAs can recruit KDM1A to participate in histone methylation modification and regulate inflammation, cell proliferation, and other biological processes, little is known about the role of KDM1A-lncRNA interaction during atherosclerosis. The present study sought to delineate the effect of the interaction between lnc_000048 and KDM1A on plaque rupture in ca...
Source: Molecular Neurobiology - March 25, 2023 Category: Neurology Source Type: research

Inhibiting Cyclin B1-treated Pontine Infarction by Suppressing Proliferation of SPP1+ Microglia
AbstractPontine infarction is the major subtype of brainstem stroke causing severe neurological deficits. The pathophysiology and treatment of pontine infarction was rarely studied. A rat model of acute pontine infarction was established via injection of endothelin-1 in the pons. Single-cell RNA sequencing was applied to detect the cellular response in pontine infarction. Based on this finding, a potential treatment for pontine infarction targeting microglia was verified. Occlusion of penetrating artery caused by endothelin-1 led to pontine infarction. Single-cell RNA sequencing revealed a subtype of activated microglia, S...
Source: Molecular Neurobiology - March 3, 2023 Category: Neurology Source Type: research

Activation of CREB-BDNF Pathway in Pyramidal Neurons in the Hippocampus Improves the Neurological Outcome of Mice with Ischemic Stroke
In this study, overexpression of CREB protein in pyramidal neurons in vCA1 by AAV virus significantly upregulated the content of BDNF and ameliorated the dysfunction induced by ischemic stroke. Our results demonstrated activation of the CREB-BDNF pathway in vCA1 pyramidal neurons significantly improved neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke.
Source: Molecular Neurobiology - March 3, 2023 Category: Neurology Source Type: research

The Weakened Interaction Between HECTD4 and GluN2B in Ischemic Stroke Promotes Calcium Overload and Brain Injury Through a Mechanism Involving the Decrease of GluN2B and MALT1 Ubiquitination
This study explores the relationship between HECTD4, GluN2B, and MALT1, focusing on their role in brain injury in ischemic stroke. Rats were subjected to 2  h-ischemia followed by 24-h reperfusion to establish an ischemic stroke model. We observed the downregulation of HECTD4 and the upregulation of MALT1. Additionally, an increased GluN2B phosphorylation was concomitant with weakened interactions between HECTD4 and GluN2B, followed by decreased stria tal-enriched protein phosphatase (STEP61). Knockdown of HECTD4 exacerbated hypoxia- or NMDA-induced injury in nerve cells coincident with a decrease in GluN2B and MALT1 ubiq...
Source: Molecular Neurobiology - March 1, 2023 Category: Neurology Source Type: research

Amorfrutin B Protects Mouse Brain Neurons from Hypoxia/Ischemia by Inhibiting Apoptosis and Autophagy Processes Through Gene Methylation- and miRNA-Dependent Regulation
Abstract Amorfrutin B is a selective modulator of the PPAR γ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis i n terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia,...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Toll-Like Receptor 4 Signaling in Neurons Mediates Cerebral Ischemia/Reperfusion Injury
AbstractIn microglia, Toll-like receptor 4 (TLR4) is well known to contribute to neuroinflammatory responses following brain ischemia. TLR4 is also expressed in neurons and can mediate the conduction of calcium (Ca2+) influx, but the mechanistic link between neuronal TLR4 signaling and brain ischemic injury is still poorly understood. Here, primary neuronal cell cultures from TLR4 knockout mice and mice with conditional TLR4 knockout in glutamatergic neurons (TLR4cKO) were used to establish ischemic models in vitro and in vivo, respectively. We found that deleting TLR4 would reduce the neuronal death and intracellular Ca2+...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Role of tRNA-Derived Fragments in Neurological Disorders: a Review
AbstracttRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer ’s, epilepsy, Parkinson’s, MELAS, autism, and Huntington’s disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats
In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced per...
Source: Molecular Neurobiology - January 5, 2023 Category: Neurology Source Type: research