Filtered By:
Specialty: Cancer & Oncology
Drug: Fortamet

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 22 results found since Jan 2013.

Metformin is a Novel Suppressor for Vimentin in Human Gastric Cancer Cell Line
In this study, AGS gastric cancer cells were treated with metformin and vimentin-specific siRNA (vim-siRNA) for 48 h. The impact of metformin and vim-siRNA on vimentin downregulation in AGS cells were analyzed by quantitative PCR and Western blot. Following treatment with metformin and vim-siRNA, cell motility, migration and invasion abilities of AGS cells were also analyzed. The results showed that inhibition of vimentin due to metformin was comparable with the vim-siRNA. Furthermore, wound-healing and invasion assays showed a significant decrease in migration and invasion of AGS cells following metformin and vim-siRNA tr...
Source: Cancer Control - February 18, 2022 Category: Cancer & Oncology Authors: Shiva Valaee Mehdi Shamsara Mohammad Mehdi Yaghoobi Source Type: research

Combination simvastatin and metformin synergistically inhibits endometrial cancer cell growth.
CONCLUSIONS: MET+SIM treatment synergistically inhibits endometrial cancer cell viability. This may be mediated by apoptosis and mTOR pathway inhibition. Our results provide preclinical evidence that the combination of these well-tolerated drugs may warrant further clinical investigation for endometrial cancer treatment. PMID: 31178149 [PubMed - as supplied by publisher]
Source: Gynecologic Oncology - June 5, 2019 Category: Cancer & Oncology Authors: Kim JS, Turbov J, Rosales R, Thaete LG, Rodriguez GC Tags: Gynecol Oncol Source Type: research

Metformin Suppresses Hepatocellular Carcinoma through Regulating Alternative Splicing of LGR4
CONCLUSIONS: LGR4 could promote the ability of cell proliferation, migration, and invasion in HCC, which could be reduced by metformin through alternative splicing.PMID:36385965 | PMC:PMC9652085 | DOI:10.1155/2022/1774095
Source: Journal of Oncology - November 17, 2022 Category: Cancer & Oncology Authors: Han Zhuo Shuying Miao Zhenquan Jin Deming Zhu Zhenggang Xu Dongwei Sun Jie Ji Zhongming Tan Source Type: research

Regulation of metformin response by breast cancer associated gene 2.
Abstract Adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA)-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115), a novel Really Interesting New Gene (RING) finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors...
Source: Neoplasia - December 1, 2013 Category: Cancer & Oncology Authors: Buac D, Kona FR, Seth AK, Dou QP Tags: Neoplasia Source Type: research

The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells.
Authors: Shimada H, Satohisa S, Kohno T, Takahashi S, Hatakeyama T, Konno T, Tsujiwaki M, Saito T, Kojima T Abstract Lipolysis-stimulated lipoprotein receptor (LSR) has been identified as a novel molecular constituent of tricellular contacts that have a barrier function for the cellular sheet. LSR recruits tricellulin (TRIC), which is the first molecular component of tricellular tight junctions. Knockdown of LSR increases cell motility and invasion of certain cancer cells. However, the behavior and the roles of LSR in endometrial cancer remain unknown. In the present study, we investigated the behavior and roles of...
Source: Oncotarget - April 3, 2016 Category: Cancer & Oncology Tags: Oncotarget Source Type: research

Inhibition of p38 MAPK-dependent MutS homologue-2 (MSH2) expression by metformin enhances gefitinib-induced cytotoxicity in human squamous lung cancer cells
Conclusion: Together, down-regulation of MSH2 expression can be a possible strategy to enhance the sensitivity of gefitinib to human lung squamous cancer cells.
Source: Lung Cancer - October 17, 2013 Category: Cancer & Oncology Authors: Jen-Chung Ko, Hsien-Chun Chiu, Ting-Yu Wo, Yi-Jhen Huang, Sheng-Chieh Tseng, Yu-Ching Huang, Huang-Jen Chen, Jhan-Jhang Syu, Chien-Yu Chen, Yun-Ting Jian, Yi-Jun Jian, Yun-Wei Lin Tags: Carcinogenesis and molecular biology Source Type: research

Metformin anti-tumor effect via disruption of the MID1 translational regulator complex and AR downregulation in prostate cancer cells
Conclusions: Findings reported herein uncover a mechanism for the anti-tumor activity of metformin in prostate cancer, which is independent of its anti-diabetic effects. These data provide a rationale for the use of metformin in the treatment of hormone naive and castration-resistant prostate cancer and suggest AR is an important indirect target of metformin.
Source: BMC Cancer - January 31, 2014 Category: Cancer & Oncology Authors: Ummuhan DemirAndrea KoehlerRainer SchneiderSusann SchweigerHelmut Klocker Source Type: research

Role of AMPK in Regulating EMT
In cancer cells, the epithelial–mesenchymal transition (EMT) confers the ability to invade basement membranes and metastasize to distant sites, establishing it as an appealing target for therapeutic intervention. Here, we report a novel function of the master metabolic kinase AMPK in suppressing EMT by modulating the Akt–MDM2–Foxo3 signaling axis. This mechanistic link was supported by the effects of siRNA-mediated knockdown and pharmacologic activation of AMPK on epithelial and mesenchymal markers in established breast and prostate cancer cells. Exposure of cells to OSU-53, a novel allosteric AMPK activator, as well...
Source: Cancer Research - September 1, 2014 Category: Cancer & Oncology Authors: Chou, C.-C., Lee, K.-H., Lai, I.-L., Wang, D., Mo, X., Kulp, S. K., Shapiro, C. L., Chen, C.-S. Tags: Therapeutics, Targets, and Chemical Biology Source Type: research

AMPK/mTOR-Mediated Inhibition of Survivin Partly Contributes to Metformin-Induced Apoptosis in Human Gastric Cancer Cell.
Abstract Abstract Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatme...
Source: Cancer Biology and Therapy - December 2, 2014 Category: Cancer & Oncology Authors: Han G, Gong H, Wang Y, Guo S, Liu K Tags: Cancer Biol Ther Source Type: research

Abstract 16: Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necroptosis in C4-2B osseous metastatic castration-resistant prostate cancer cells
Castration-resistant prostate cancer (CRPC) cells acquire resistance to chemotherapy and apoptosis in part due to enhanced aerobic glycolysis and biomass production, known as Warburg effect. We previously demonstrated that combination simvastatin (SIM) and metformin (MET) ameliorates critical Warburg effect-related metabolic aberrations of C4-2B cells, synergistically and significantly decreases CRPC cell viability and metastatic properties, with minimal effect on normal prostate epithelial cells, and inhibits primary prostate tumor growth, metastasis, and biochemical failure in an orthotopic model of metastatic CRPC, more...
Source: Cancer Research - August 2, 2015 Category: Cancer & Oncology Authors: Babcook, M. A., Sramkoski, R. M., Fujioka, H., Daneshgari, F., Almasan, A., Shukla, S., Gupta, S. Tags: Molecular and Cellular Biology Source Type: research

Abstract 3814: Metformin induces ER stress-dependent apoptosis through miR-708-5p/NNAT pathway in prostate cancer
In this study, we identified miR-708-5p as a novel downstream effector of metformin in prostate cancer. By increasing the expression of miR-708-5p, metformin suppresses the expression of endoplasmic reticulum (ER) membrane protein neuronatin (NNAT) and subsequently induces apoptosis of prostate cancer cells through ER stress pathway. Notably, down-regulated NNAT is associated with down-regulated intracellular calcium level and induces malformation of endoplasmic reticulum-ribosome structure which is revealed by electronic microscopy. Furthermore, western blot shows that the unfolded-protein response (UPR) proteins includin...
Source: Cancer Research - August 2, 2015 Category: Cancer & Oncology Authors: Yang, J., Wei, J., Wu, Y., Wang, Z., Guo, Y., Li, X. Tags: Molecular and Cellular Biology Source Type: research

Abstract 4969: Metformin causes AR degradation via Skp2-mediated ubiquitination
This study supports that use of metformin in combination with Enza or other ARSI drugs may not only block autophagy survival but also cause AR degradation that leads to PC cell death.Citation Format: Joy C. Yang, Allen C. Gao, Christopher P. Evans. Metformin causes AR degradation via Skp2-mediated ubiquitination. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4969. doi:10.1158/1538-7445.AM2015-4969
Source: Cancer Research - August 2, 2015 Category: Cancer & Oncology Authors: Yang, J. C., Gao, A. C., Evans, C. P. Tags: Molecular and Cellular Biology Source Type: research

Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells
Abstract Development of new therapeutic strategies is becoming increasingly important to overcome tamoxifen resistance. Recently, much interest has been focused on anti-tumor effects of metformin commonly used to treat type II diabetes. Increased protein expression and signaling of epidermal growth factor receptor (EGFR) family is a possible mechanism involved in tamoxifen resistance. Since HER2/HER3 heterodimers are able to induce strong downstream signaling and activate various biological responses such as cellular proliferation and growth, we investigated the anti-cancer effect of metformin by inhibition of sig...
Source: Tumor Biology - November 18, 2015 Category: Cancer & Oncology Source Type: research

Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells
Abstract Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against T...
Source: Breast Cancer Research and Treatment - March 8, 2016 Category: Cancer & Oncology Source Type: research

Activation of autophagy flux by metformin downregulates cellular FLICE-like inhibitory protein and enhances TRAIL- induced apoptosis.
In this study, we demonstrated that metformin could induce TRAIL-mediated apoptotic cell death in TRAIL-resistant human lung adenocarcinoma A549 cells. Pretreatment of metformindownregulation of c-FLIP and markedly enhanced TRAIL-induced tumor cell death by dose-dependent manner. Treatment with metformin resulted in slight increase in the accumulation of microtubule-associated protein light chain LC3-II and significantly decreased the p62 protein levels by dose-dependent manner indicated that metformin induced autophagy flux activation in the lung cancer cells. Inhibition of autophagy flux using a specific inhibitor and ge...
Source: Oncotarget - March 19, 2016 Category: Cancer & Oncology Tags: Oncotarget Source Type: research