Brain outcomes in runted piglets: a translational model of fetal growth restriction

etal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioural disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined. There are currently no therapeutic interventions available to protect the FGR newborn brain. With the wide range of long-term neurodevelopmental disorders associated with FGR, the use of an animal model appropriate to investigating mechanisms of injury in the FGR newborn is crucial for the development of effective and targeted therapies for babies. Piglets are ideal animals to explore how perinatal insults affect brain structure and function. FGR occurs spontaneously in the piglet, unlike other animal models that require surgical or chemical intervention, allowing brain outcomes to be studied without the confounding impacts of experimental interventions. The FGR piglet mimics many of the human pathophysiological outcomes associated with FGR including asymmetrical growth restriction with brain sparing. This review will discuss the similarities observed in brain outcomes between the human FGR and FGR piglet from a magnetic resonance imaging in the living and a histological perspective. FGR piglet studies provide the opportunity to determine and track mechanisms of brain injury in a clinically relevant animal ...
Source: Developmental Neuroscience - Category: Neuroscience Source Type: research