Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes

This study has explored seven different approaches for the immobilization of poly(lactic acid) (PLA) nanoparticles on the surface of two different T lymphocyte cell lines. The cell lines used were human Jurkat T cells and CD4+ TEM cells. The latter cells possess blood-brain barrier (BBB) migratory properties and are attractive for the development of cell-based delivery systems to the central nervous system (CNS). PLA nanoparticles were immobilized either via covalent active ester-amine, azide-alkyne cycloaddition, and thiol-maleimide coupling, or via noncovalent approaches that use lectin-carbohydrate, electrostatic, or biotin-NeutrAvidin interactions. The cell surface immobilization of the nanoparticles was monitored with flow cytometry and confocal microscopy. By tuning the initial nanoparticle/cell ratio, T cells can be decorated with up to ∼185 nanoparticles/cell as determined by confocal microscopy. The functional properties of the nanoparticle-decorated cells were assessed by evaluating their binding to ICAM-1, a key protein involved in the adhesion of CD4+ TEM cells to the BBB endothelium, as well as in a two-chamber model in vitro BBB migration assay. It was found that the migratory behavior of CD4+ TEM cells carrying carboxylic acid-, biotin-, or Wheat germ agglutinin (WGA)-functionalized nanoparticles was not affected by the presence of the nanoparticle payload. In contrast, however, for cells decorated with maleimide-functionalized nanoparticles, a reduction in t...
Source: Biomacromolecules - Category: Biochemistry Authors: Source Type: research