Coronary microvascular dysfunction pathophysiology in COVID ‐19

AbstractRecently, accumulating evidence has highlighted the role of endothelial dysfunction in COVID-19 progression. Coronary microvascular dysfunction (CMD) plays a pivotal role in cardiovascular disease (CVD) and CVD-related risk factors (e.g., age, gender, hypertension, diabetes mellitus, obesity, etc.). Equally, these are also risk factors for COVID-19. The purpose of this review was to explore CMD pathophysiology in COVID-19, based on recent evidence. COVID-19 mechanisms were reviewed in terms of imbalanced renin-angiotensin-aldosterone-systems (RAAS), systemic inflammation and immune responses, endothelial dysfunction and coagulatory disorders. Based on these mechanisms, we addressed CMD pathophysiology within the context of COVID-19, from five perspectives. The first was the disarrangement of local RAAS and Kallikrein-kinin-systems attributable to SARS-Cov-2 entry, and the concomitant decrease in coronary microvascular endothelial angiotensin I converting enzyme 2 (ACE2) levels. The second was related to coronary microvascular obstruction, induced by COVID-19-associated systemic hyper-inflammation and pro-thrombotic state. The third was focused on how pneumonia/acute respiratory distress syndrome (ARDS)-related systemic hypoxia elicited oxidative stress in coronary microvessels and cardiac sympathetic nerve activation. Fourthly, we discussed how autonomic nerve dysfunction mediated by COVID-19-associated mental, physical or physiological factors could elicit changes in...
Source: Microcirculation - Category: Research Authors: Tags: REVIEW Source Type: research