Pathways in the Pathophysiology of Coronavirus 19 Lung Disease Accessible to Prevention and Treatment

Background: In COVID 19 related lung disease, which is a leading cause of death from this disease, cytokines like tumor necrosis factor-alpha (TNF alpha) may be pivotal in the pathogenesis. TNF alpha reduces fluid absorption due to impairment of sodium and chloride transport required for building an osmotic gradient across epithelial cells, which in the airways maintains airway surface liquid helping to keep airways open and enabling bacterial clearance and aids water absorption from the alveolar spaces. TNF alpha can, through Rho-kinase, disintegrate the endothelial and epithelial cytoskeleton, and thus break up intercellular tight junctional proteins, breaching the intercellular barrier, which prevents flooding of the interstitial and alveolar spaces with fluid.Hypotheses: (1) Preservation and restoration of airway and alveolar epithelial sodium and chloride transport and the cytoskeleton dependent integrity of the cell barriers within the lung can prevent and treat COVID 19 lung disease. (2) TNF alpha is the key mediator of pulmonary edema in COVID 19 lung disease.Confirmation of hypothesis and implications: The role of a reduction in the function of epithelial sodium and chloride transport could with regards to chloride transport be tested by analysis of chloride levels in exhaled breath condensate and levels correlated with TNF alpha concentrations. Reduced levels would indicate a reduction of the function of the cystic fibrosis transmembrane conductance regulator (CFTR)...
Source: Frontiers in Physiology - Category: Physiology Source Type: research