Mitonuclear interactions influence multiple sclerosis risk.

Mitonuclear interactions influence multiple sclerosis risk. Gene. 2020 Jul 17;:144962 Authors: Kozin M, Kulakova O, Kiselev I, Baulina N, Boyko A, Favorova O Abstract Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by the autoimmune inflammation, demyelination, and neurodegeneration. This complex disease develops in genetically predisposed individuals under adverse environmental factors. To date, a large number of MS-associated polymorphic loci of the nuclear genome have been identified; however, their total variability can explain only about 48% of the observed inheritance of MS. Polymorphic variants of the mitochondrial genome and interactions of mitochondrial and nuclear genes (mitonuclear interactions) may be the possible sources of the "missing heritability". We analyzed the association with MS of 10 mitochondrial DNA polymorphisms (m.1719, m.4216, m.4580, m.4917, m.7028, m.9055, m.10398, m.12308, m.13368, m.13708) in DNA of 540 MS patients and 406 healthy individuals. The allele m.9055*G was the only mitochondrial variant associated with MS (Pf = 0.027). To evaluate interactions of mitochondrial and nuclear genomes, we searched for biallelic combinations containing one of 10 mitochondrial variants and one of 35 variants of immune-related nuclear genes. Carriership of mitochondrial variants m.4216, m.4580, or m.13708 in biallelic combinations with variants of nuclear genes IL7R, CLEC16A, ...
Source: Gene - Category: Genetics & Stem Cells Authors: Tags: Gene Source Type: research