Transplanted Neurons Derived From Induced Pluripotent Stem Cells Restore Function Following Stroke in Rats

Like much of the nervous system, the brain doesn't regenerate well at all. Lost cells remain lost, and lost function is often permanent. One of the most important goals in the field of regenerative medicine is repair of the brain, which might be achieved in the decades ahead via delivery of new neurons that can integrate with existing neural circuits. Far from being a class of therapy only deployed following evident injury such as the aftermath of a stroke, this could take the form of periodic treatments that maintain the brain by repairing the lesser damage and loss of neurons that accumulates in an ongoing fashion over a lifetime. As illustrated by the painful and usually partial recovery that can be achieved by some people following injury to the brain, the brain is capable of adaptation. Uninjured areas can take on new functions. This is why it is reasonable to expect therapies based on delivery of new neurons to allow restored function following injury. Indeed, it is demonstrated by researchers in this paper, in which human neurons derived from induced pluripotent stem cells integrate with the existing neural networks of a damaged rat brain to restore motor control and other capabilities. The researchers engineered a series of tests to prove that the human neurons were active and responsible for the restored functions in treated rats - this isn't just a matter of transplanted cells secreting signals that assist regeneration undertaken by native cells. Resea...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs