Delivery of exogenous proteins by mesenchymal stem cells attenuates early memory deficits in a murine model of Alzheimer's disease.

In this study, we used adenovirus-mediated gene transduction of bone marrow MSCs to deliver exogenous proteins into the brain of APPswe/PSEN1dE9 (APP/PS1) mice in the early stage of impairment. We observed that engrafted MSCs carrying exogenous (C-X3-C motif) ligand 1 (CX3CL1) alone reduced the production of the inflammatory cytokine TNF-ɑ and improved synapse-related protein expression but not cognitive function. Transplantation of MSCs carrying CX3CL1 and Wnt3a (CX3CL1-Wnt3a-MSC) significantly attenuated the learning and memory impairment when compared with a control group. The improvement of neurobehavioral functions in APP/PS1 mice treated with CX3CL1-Wnt3a-MSC was related to the inhibition of microglial neurotoxicity and promotion of hippocampal neurogenesis. Transplantation of CX3CL1-Wnt3a-MSC also regulated phosphoinositide 3-kinase/activated protein kinase B (PI3K/AKT) signaling to inhibit the activity of glycogen synthase kinase 3 beta (GSK3β). Taken together, these results indicate that the delivery of exogenous proteins via MSCs can modulate microglial function and enhance neurogenesis, thereby providing new insights into AD intervention. PMID: 31837910 [PubMed - as supplied by publisher]
Source: Neurobiology of Aging - Category: Geriatrics Authors: Tags: Neurobiol Aging Source Type: research