WSZG inhibits BMSC-induced EMT and bone metastasis in breast cancer by regulating TGF- β1/Smads signaling.

This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast cancer cells and ameliorated bone metastases and damages in nude mice following co-injection of BMSCs and MDA-MB-231BO breast cancer cells. Further investigation showed that the transforming growth factor-β1 (TGF-β1)/Smads pathway was an important mechanism enabling BMSCs to induce EMT occurrence of breast cancer cells. WSZG treatment reversed BMSC-induced EMT by downregulating TGF-β1/Smads signaling. Thus, WSZG extracts may be regarded as a potential antibone-metastatic agent for breast cancer therapy. PMID: 31810139 [PubMed - in process]
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Tags: Biomed Pharmacother Source Type: research

Related Links:

Breast cancer depends on women’s age. Its chemotherapy and hormone therapy lead to the loss of bone density and disruption of the skeleton. The proteins RANK and RANKL play a pivotal role in the formation of osteoclasts. It is also well established that the same proteins (RANK and RANKL) are the main molecules that play an important role in mammary stem cell biology. Mammary stem cells guarantee differentiation of the epithelial mammary cells, the growth of which is regulated by the progesterone-induced RANKL signaling pathway. The crosstalk between progesterone receptor, stimulated by progesterone and its a...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research
ConclusionsWe identified a stemness-related gene panel associated with JQ1 and describe how this inhibitor modifies the stemness landscape in TNBC. Therefore, we propose a novel role for JQ1 as a stemness-targeting drug. Loss of the stem cell phenotype via JQ1 treatment could lead to less aggressive and more chemo-sensitive tumours, reflecting a better patient prognosis. Thus, the identified gene panel may be of interest for the clinical management of patients with aggressive TNBC.
Source: Cellular Oncology - Category: Cancer & Oncology Source Type: research
This study was undertaken to investigate the antibone-metastatic activities and mechanisms of WSZG extract by evaluating the effect of this formula on the cross-talk between bone marrow-derived mesenchymal stem cells (BMSCs) and breast cancer cells in triggering epithelial-mesenchymal transition (EMT) in vivo and in vitro. The results demonstrated that BMSCs might enhance the invasive and metastatic potentials of breast cancer cells as a consequence of EMT induction through direct cell-to-cell contact. WSZG treatment remarkably suppressed motility, invasion, EMT-related gene, and protein markers in BMSC-conditioned breast ...
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research
. Roose Fluidity in cell fate or heterogeneity in cell identity is an interesting cell biological phenomenon, which at the same time poses a significant obstacle for cancer therapy. The mammary gland seems a relatively straightforward organ with stromal cells and basal- and luminal- epithelial cell types. In reality, the epithelial cell fates are much more complex and heterogeneous, which is the topic of this review. Part of the complexity comes from the dynamic nature of this organ: the primitive epithelial tree undergoes extensively remodeling and expansion during puberty, pregnancy, and lactation and, unlike most ot...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
In conclusion, our data show how oncogenic and tumor-suppressive drivers of cellular senescence act to regulate surveillance processes that can be circumvented to enable SnCs to elude immune recognition but can be reversed by cell surface-targeted interventions to purge the SnCs that persist in vitro and in patients. Since eliminating SnCs can prevent tumor progression, delay the onset of degenerative diseases, and restore fitness; since NKG2D-Ls are not widely expressed in healthy human tissues and NKG2D-L shedding is an evasion mechanism also employed by tumor cells; and since increasing numbers of B cells express NKG2D ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
z-Riascos Abasolo Schwartz Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven ...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Article Source Type: research
Augusto Orlandi Breast cancer is the most common form of tumor in women and the leading cause of cancer-related mortality. Even though the major cellular burden in breast cancer is constituted by the so-called bulk tumor cells, another cell subpopulation named cancer stem cells (CSCs) has been identified. The latter have stem features, a self-renewal capacity, and the ability to regenerate the bulk tumor cells. CSCs have been described in several cancer types but breast cancer stem cells (BCSCs) were among the first to be identified and characterized. Therefore, many efforts have been put into the phenotypic character...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
The mevalonate pathway (also known as the cholesterol biosynthesis pathway) plays a crucial metabolic role in normal cell function as well as in the pathological environment. It leads to the synthesis of sterol and non-sterol isoprenoid biomolecules which subserve a variety of cellular functions. It is known to be deregulated in many disease processes. Statins and bisphosphonates are prominent inhibitors of the mevalonate pathway. They inhibit cell proliferation and activate apoptotic signalling and suppress tumour growth. Statins subdue metastatic spread of tumours by virtue of their ability to suppress invasion and angio...
Source: Current Cancer Therapy Reviews - Category: Cancer & Oncology Source Type: research
Emily Roarty Jing Wang Fei Yang Michelle Barton Jeffrey Rosen Sendurai Mani Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is ...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
Discussion MDSCs violently emerge in pathological conditions in an attempt to limit potentially harmful immune and inflammatory responses. Mechanisms supporting their expansion and survival are deeply investigated in cancer, in the perspective to reactivate specific antitumor responses and prevent their contribution to disease evolution. These findings will likely contribute to improve the targeting of MDSCs in anticancer immunotherapies, either alone or in combination with immune checkpoint inhibitors. New evidence indicates that the expansion of myeloid cell differentiation in pathology is subject to fine-tuning, as its...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
More News: Breast Cancer | Cancer | Cancer & Oncology | Cancer Therapy | China Health | Drugs & Pharmacology | Epithelial Cancer | Genetics | Science | Stem Cell Therapy | Stem Cells | Study