Leucine ‐rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease

AbstractOver the last two decades, a number of studies have underlined the importance of lysosomal ‐based degradative pathways in maintaining the homeostasis of post‐mitotic cells, and revealed the remarkable contribution of a functional autophagic machinery in the promotion of longevity. In contrast, defects in the clearance of organelles and aberrant protein aggregates have been linked to a ccelerated neuronal loss and neurological dysfunction. Several neurodegenerative disorders, among which Alzheimer disease (AD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) to name a few, are associated with alterations of the autophagy and endo‐lysosomal pathways. In Park inson disease (PD), the most prevalent genetic determinant,Leucine ‐rich repeat kinase 2 (LRRK2), is believed to be involved in the regulation of intracellular vesicle traffic, autophagy and lysosomal function. Here, we review the current understanding of the mechanisms by which LRRK2 regulates lysosomal ‐based degradative pathways in neuronal and non‐neuronal cells and discuss the impact of pathogenic PD mutations in contributing to lysosomal dyshomeostasis.
Source: Journal of Neurochemistry - Category: Neuroscience Authors: Tags: Review Source Type: research

Related Links:

CONCLUSIONS: The varied pharmacologic mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacologic effects await further study. PMID: 31205106 [PubMed - in process]
Source: Chinese Medical Journal - Category: General Medicine Authors: Tags: Chin Med J (Engl) Source Type: research
AbstractThe genetic variant rs72824905-G (minor allele) in thePLCG2 gene was previously associated with a reduced Alzheimer ’s disease risk (AD). The role ofPLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (...
Source: Acta Neuropathologica - Category: Neurology Source Type: research
CONCLUSIONS: The varied pharmacological mechanisms of NBP involve many complex molecular mechanisms; however, there many unknown pharmacological effects await further study.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0. PMID: 31107716 [PubMed - as supplied by publisher]
Source: Chinese Medical Journal - Category: General Medicine Authors: Tags: Chin Med J (Engl) Source Type: research
In this study, a significant (30%) increase in maximum lifespan of mice was found after nonablative transplantation of 100 million nucleated bone marrow (BM) cells from young donors, initiated at the age that is equivalent to 75 years for humans. Moreover, rejuvenation was accompanied by a high degree of BM chimerism for the nonablative approach. Six months after the transplantation, 28% of recipients' BM cells were of donor origin. The relatively high chimerism efficiency that we found is most likely due to the advanced age of our recipients having a depleted BM pool. In addition to the higher incorporation rates, ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Much of the spectrum of age-related neurodegenerative conditions is associated with, and at least partly caused by, the accumulation of abnormal proteins or protein aggregates in the brain. These include the α-synuclein associated with Parkinson's disease, the amyloid-β and tau of Alzheimer's disease, and so forth. This sort of condition, in which malformed proteins are a contributing cause, is termed a proteopathy. A more recently recognized neurodegenerative proteopathy involves the TDP-43 protein, and the evidence for its relevance to age-related dementia has reached the point at which researchers and adminis...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Conclusion The key problem with the ND field is the lack of understanding in the events preceding the development of protein-based markers – such as Tau – currently used to diagnose NDs. By this stage, the diseases become more difficult to treat. SncRNAs play an important regulatory role in the maintenance of the homeostatic brain. Therefore, changes in their concentration levels can be indicative of mechanistic changes that could precede protein-based markers. One single sncRNA biomarker is unlikely to differentiate between diseases. However, a combination of sncRNA biomarkers could be illustrative of the me...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
This study was carried out in accordance with the recommendations of the National Animal Care and Use Committee of the University of Buenos Aires (CICUAL). The protocol was approved by the CICUAL. Mice were kept under a 12-h light/dark cycle, with controlled temperature (23 ± 2°C) and humidity (40–60%) and had ad libitum access to food and water. To produce hTDP-43 transgenic lines, as described previously (Igaz et al., 2011), pronucleus of fertilized eggs from C57BL/6J × C3HeJ F1 matings were injected with a vector containing hTDP-43-WT cDNA. Monogenic tetO-TDP-WT12 mice wer...
Source: Frontiers in Genetics - Category: Genetics & Stem Cells Source Type: research
Modelling of neurological diseases can be done in mono ‐cultures for many readouts, but for authentic modelling of neuron‐microglia interactions such as synapse pruning events it is crucial to use co‐cultures. AbstractInflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normall...
Source: Stem Cells - Category: Stem Cells Authors: Tags: Embryonic Stem Cells/Induced Pluripotent Stem Cells Source Type: research
Fight Aging! provides a weekly digest of news and commentary for thousands of subscribers interested in the latest longevity science: progress towards the medical control of aging in order to prevent age-related frailty, suffering, and disease, as well as improvements in the present understanding of what works and what doesn't work when it comes to extending healthy life. Expect to see summaries of recent advances in medical research, news from the scientific community, advocacy and fundraising initiatives to help speed work on the repair and reversal of aging, links to online resources, and much more. This content is...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Using iPSC microglia to model neuroinflammation AbstractInflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allow modelling of neurodegenerati...
Source: Stem Cells - Category: Stem Cells Authors: Tags: Embryonic Stem Cells/Induced Pluripotent Stem Cells Source Type: research
More News: ALS | Alzheimer's | Brain | Dementia | Genetics | Neurology | Neuroscience | Parkinson's Disease | Study