Thromboxane A2 receptor signaling in endothelial cells attenuates monocrotaline-induced liver injury.

In this study, we explored the role of TP signaling in a monocrotaline (MCT)-induced mouse model of SOS. Relative to wild-type (WT) mice, TP-deficient (TP-/-) mice exhibited more severe MCT-liver injury, as indicated by elevated levels of alanine aminotransferase (ALT) and coagulative necrosis. Extensive accumulation of platelets in the liver was observed in both WT and TP-/- mice. TP expression co-localized with CD31-positive LSECs. MCT treatment caused LSEC destruction, concomitant with elevated expression of matrix metalloproteinases (MMPs) and adhesion molecules in WT mice, and LSEC damage was further exacerbated in TP-/- mice. Viability of isolated LSECs was lower in cells from TP-/- mice, whereas mRNA levels of MMPs and adhesion molecules were higher; U46619, a TxA2 agonist, reduced these levels in WT mice. These data suggest that TP signaling has no effect on platelet accumulation during MCT-induced liver injury, but instead prevents injury by suppressing LSEC damage. PMID: 31470032 [PubMed - as supplied by publisher]
Source: Toxicology and Applied Pharmacology - Category: Toxicology Authors: Tags: Toxicol Appl Pharmacol Source Type: research