Cardiac Magnetic Resonance Fingerprinting: Technical Developments and Initial Clinical Validation

AbstractPurpose of ReviewMagnetic resonance imaging (MRI) has enabled non-invasive myocardial tissue characterization in a wide range of cardiovascular diseases by quantifying several tissue specific parameters such as T1, T2, and T2* relaxation times. Simultaneous assessment of these parameters has recently gained interest to potentially improve diagnostic accuracy and enable further understanding of the underlying disease. However, these quantitative maps are usually acquired sequentially and are not necessarily co-registered, making multi-parametric analysis challenging. Magnetic resonance fingerprinting (MRF) has been recently introduced to unify and streamline parametric mapping into a single simultaneous, multi-parametric, fully co-registered, and efficient scan. Feasibility of cardiac MRF has been demonstrated and initial clinical validation studies are ongoing. Provide an overview of the cardiac MRF framework, recent technical developments and initial undergoing clinical validation.Recent FindingsCardiac MRF has enabled the acquisition of co-registered T1 and T2 maps in a single, efficient scan. Initial results demonstrate feasibility of cardiac MRF in healthy subjects and small patient cohorts. Current in vivo results show a small bias and comparable precision in T1 and T2 with respect to conventional clinical parametric mapping approaches. This bias may be explained by several confounding factors such as magnetization transfer and field inhomogeneities, which are cu...
Source: Current Cardiology Reports - Category: Cardiology Source Type: research