Chronic high-fat diet-induced obesity in gerbils increases pro-inflammatory cytokines and mTOR activation, and elicits neuronal death in the striatum following brief transient ischemia

The objective of this study was to investigate effects of obesity on neuronal damage and inflammation in the striatum after transient ischemia and to examine the role of mTOR which is involved in the pathogenesis of metabolic and neurological diseases. Gerbils were fed with normal diet (ND) or high-fat diet (HFD) for 12 weeks and subjected to 5 min of transient ischemia. HFD-fed gerbils showed significant increase in body weight, blood glucose level, serum triglycerides, total cholesterol and low-density lipoprotein cholesterol without affecting food intake. Neuronal death/loss in the HFD-fed gerbils occurred in the dorsolateral striatum 2 days after transient ischemia, and neuronal loss was increased 5 days after transient ischemia, although no neuronal loss was observed in ND-fed gerbils at any time after transient ischemia. The HFD-fed gerbils showed hypertrophied microglia and further increased expressions of tumor necrosis factor-alpha, interukin-1beta, mammalian target of rapamycin (mTOR) and phosphorylated-mTOR during pre- and post-ischemic phases compared with the ND-fed gerbils. Additionally, we found that treatment with mTOR inhibitor rapamycin in the HFD-fed gerbils significantly attenuated transient ischemia-induced neuronal death in the dorsolateral striatum. These findings reveal that chronic HFD-induced obesity results in severe neuroinflammation and significant increase of mTOR activation, which could contribute to neuronal death in the stratum following 5â€...
Source: Neurochemistry International - Category: Neuroscience Source Type: research