Abstract P160: Role of Uncoupling Protein 2 in Stroke Susceptibility of Stroke-prone Spontaneously Hypertensive Rat [Session Title: Cerebrovascular Disease and Stroke]

Mitochondrial dysfunction causes severe cellular derangements potentially underlying tissue injury and consequent diseases. Evidence of a direct involvement of mitochondrial dysfunction in hypertensive target organ damage is still poor.The gene encoding Uncoupling Protein 2 (UCP2), a inner mitochondrial membrane protein, maps inside stroke QTL/STR1 in stroke prone spontaneously hypertensive rat (SHRSP). We explored the role of UCP2 in stroke pathogenesis of SHRSP. Male SHRSP, stroke resistant SHR (SHRSR) and reciprocal STR1/congenic rats were fed with stroke permissive Japanese style diet (JD). A group of SHRSP received JD plus fenofibrate (150 mg/kg/die). Rats were sacrificed at stroke occurrence. Additional SHRSR and SHRSP rats were sacrificed at 1, 3, 6, 12 months of age upon regular diet. SBP, BW, proteinuria, stroke signs were monitored. Brains were used for molecular analysis (UCP2 gene and protein expression, Nf-kB protein expression, oxidative stress quantification) and for histological analyses.As a result, brain UCP2 expression was reduced to 20% by JD only in SHRSP (showing 100% stroke occurrence by 7 weeks of JD). Fenofibrate protected SHRSP from stroke and upregulated brain UCP2 (+ 100%). Congenic rats carrying STR1/QTL showed increased (+100%) brain UCP2 expression, as compared to SHRSP, when resistant to stroke, and, viceversa, decreased (-50%) brain UCP2 levels, as compared to SHRSR, when susceptible to stroke. Brain UCP2 expression progressively decreased wit...
Source: Hypertension - Category: Cardiology Authors: Tags: Session Title: Cerebrovascular Disease and Stroke Source Type: research