Transforming growth factor- β signals promote progression of squamous cell carcinoma by inducing epithelial-mesenchymal transition and angiogenesis

In this study, we examined the effects of TGF-β signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-β induced the activation of TGF-β signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-β signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-β signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin β3), whose expression was induced by TGF-β in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-β signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.PMID:38657447 | DOI:10.1016/j.bbrc.2024.149965
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Source Type: research