Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment

This study aimed to screen differentially expressed genes (DEGs) involved in the influence of antiangiogenic therapy on myeloid-derived suppressor cell (MDSC) infiltration and investigate their mechanisms of action. Data on DEGs after the action of antiangiogenic drugs in a pan-cancer context were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the clusterProfiler package in R software. Single-sample gene set enrichment analysis was performed using the gene set variation analysis package to evaluate the levels of immune cells and the activity of immune-related pathways. The relationships of DEGs with the infiltration levels of MDSCs and specific immune cell subpopulations were investigated via gene module analysis. The top 10 key genes were subsequently obtained from PPI network analysis using the cytoHubba plugin of the Cytoscape platform. When the DEGs of the four datasets were intersected, a DEG in the intersection of three datasets and 12 DEGs in the intersection of two datasets were upregulated, and 28 DEGs in the intersection of two datasets were downregulated. GO and KEGG pathway enrichment analyses revealed that the DEGs were associated with multiple important signaling pathways closely related to tumor onset and development, including cell differentiation, cell proliferation, the cell cycle, and immune responses. Most downregulated genes in...
Source: Medical Oncology - Category: Cancer & Oncology Source Type: research