Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer

In this study, we demonstrated that AA decreased cell viability and Ki67 expression, along with its accumulation in the G0/G1 phase in FaDu and SCC-154 cell lines. Furthermore, AA exposure induced morphological changes in mitochondria associated with ferroptosis. AA-induced ferroptosis is accompanied by depletion of glutathione (GSH) and increased levels of ferrous ions (Fe2+), reactive oxygen species (ROS), and malondialdehyde (MDA). However, these ferroptotic effects were ameliorated by deferoxamine and N-acetylcysteine. Network pharmacology results showed that signal transducer and activator of transcription 3 (STAT3) is a key target of AA against oropharyngeal cancer. AA markedly downregulates the relative mRNA expression of STAT3 and glutathione peroxidase 4 (GPX4). Immunoblotting indicated that the protein levels of p-STAT3, STAT3, and GPX4 in FaDu and SCC-154 cells decreased significantly in response to AA treatment. Mechanistically, a chromatin immunoprecipitation assay confirmed that AA exposure reduced STAT3 expression in the GPX4 promoter region. Additionally, AA-induced inhibition of cell growth and ferroptosis was suppressed by STAT3 and GPX4 overexpression, respectively. In summary, AA inhibited oropharyngeal cancer cell growth in vitro by regulating STAT3/GPX4-mediated ferroptosis, which may provide a novel theoretical basis for the clinical treatment of oropharyngeal cancer with AA.PMID:38385781 | DOI:10.1080/10715762.2024.2320396
Source: Free Radical Research - Category: Research Authors: Source Type: research