Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium

Cell Mol Life Sci. 2024 Feb 19;81(1):95. doi: 10.1007/s00018-023-05101-2.ABSTRACTHuman induced pluripotent stem cells (hiPSCs) offer opportunities to study human biology where primary cell types are limited. CRISPR technology allows forward genetic screens using engineered Cas9-expressing cells. Here, we sought to generate a CRISPR activation (CRISPRa) hiPSC line to activate endogenous genes during pluripotency and differentiation. We first targeted catalytically inactive Cas9 fused to VP64, p65 and Rta activators (dCas9-VPR) regulated by the constitutive CAG promoter to the AAVS1 safe harbor site. These CRISPRa hiPSC lines effectively activate target genes in pluripotency, however the dCas9-VPR transgene expression is silenced after differentiation into cardiomyocytes and endothelial cells. To understand this silencing, we systematically tested different safe harbor sites and different promoters. Targeting to safe harbor sites hROSA26 and CLYBL loci also yielded hiPSCs that expressed dCas9-VPR in pluripotency but silenced during differentiation. Muscle-specific regulatory cassettes, derived from cardiac troponin T or muscle creatine kinase promoters, were also silent after differentiation when dCas9-VPR was introduced. In contrast, in cell lines where the dCas9-VPR sequence was replaced with cDNAs encoding fluorescent proteins, expression persisted during differentiation in all loci and with all promoters. Promoter DNA was hypermethylated in CRISPRa-engineered lines, and dem...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Source Type: research