Adenine base editor-based correction of the cardiac pathogenic Lmna c.1621C   & gt;  T mutation in murine hearts

In this study, we harnessed adeno-associated virus (AAV) and a mouse model carrying the cardiomyopathy-causing Lmna c.1621C > T mutation to demonstrate key steps and concerns in designing a cardiac ABE experiment in vivo. We found DeepABE as a reliable deep-learning-based model to predict ABE editing outcomes in the heart. Screening of sgRNAs for a Cas9 mutant with relieved protospacer adjacent motif (PAM) allowed the reduction of bystander editing. The ABE editing efficiency can be significantly enhanced by modifying the TadA and Cas9 variants, which are core components of ABEs. The ABE systems can be delivered into the heart via either dual AAV or all-in-one AAV vectors. Together, this study showcased crucial technical considerations in designing an ABE system for the heart and pointed out major challenges in further improvement of this new technology for gene therapy.PMID:38332517 | PMC:PMC10853587 | DOI:10.1111/jcmm.18145
Source: J Cell Mol Med - Category: Molecular Biology Authors: Source Type: research