4R MAPT/tau drives endolysosomal and autophagy dysfunction in frontotemporal dementia

Autophagy. 2024 Jan 4. doi: 10.1080/15548627.2023.2300917. Online ahead of print.ABSTRACTDysfunction of the neuronal endolysosome and macroautophagy/autophagy pathway is emerging as an important pathogenic mechanism in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The VCP (valosin-containing protein) gene is of significant relevance, directly implicated in both FTD and ALS. In our recent study, we used patient-derived stem cells to study the effects of VCP mutations on the endolysosome and autophagy system in human cortical excitatory neurons. We found that VCP mutations cause an abnormal accumulation of enlarged endosomes and lysosomes, accompanied by reduced autophagy flux. VCP mutations also lead to the spatial dissociation of intra-nuclear RNA-binding proteins, FUS and SFPQ, which correlates with alternative splicing of the MAPT pre-mRNA and increased MAPT/tau phosphorylation. Importantly, we found that an increase in the 4 R-MAPT/tau isoform is sufficient to drive toxic changes in healthy human cortical excitatory neurons, including MAPT/tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress, and apoptosis. Together, our data suggest that endolysosomal and autophagy dysfunction could represent a convergent pathogenic "design principle" shared by both FTD and ALS.PMID:38174587 | DOI:10.1080/15548627.2023.2300917
Source: Autophagy - Category: Cytology Authors: Source Type: research